NASA

TP
ERINN
o c.’
NASA Technical Paper 1441 '
LOAN COPY: RETURI == B
AFWL TECHMICAL Liz = L
N KIRTLAND AF3, M. 2= 3
w==== 2
=3
=2
Interactive Debug Program for =

Evaluation and Modification

of Assembly-Language Software

Dale J. Arpasi

APRIL 1979

NNASN

- 23 APR1979
~L Tessmsal Libesry
; Ai‘ ')“P?@'CY_QE
[P TPEE R Y

TECH LIBRARY KAFB, NM

LT

0134k5k6

NASA Technical Paper 1441

Interactive Debug Program for
Evaluation and Modification
of Assembly-Language Software

Dale J. Arpasi
Lewis Research Center
Cleveland, Obio

NNASN

National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1979

SUMMARY

INTRODUCTION, . .
. GENERAL CONSIDERATIONS

DEBUG PROGRAM CAPABILITIES,

Initialization, .

Addressing
Information Display

Program Modifications

Execution and Analysis

PROGRAM DESCRIPTION

Command Structure.,

Name Assignments . .,

Address Formats ., .,

CONTENTS

........................
........................

........................

Source-Name Input Command - UDEBUGo oe...
Sector Base Statistics Command - BDEBUG., .,« ...
Display Command - PDEBUG, . . .
Modification Command - CDEBUG .
Program Addition Command - ADEBUG i i v v v v v v v v v o v u.
Subroutine Specification and Execution Command - VDEBUG
Program Execution Command - XDEBUG ., e e e e e e e e e e .« e e e .
Breakpoint Command - SDEBUG 0 4 v 4 v v s o o o o o o o o oo
Return Command - RDEBUG ., . , .
Transfer Command - TDEBUG ., , . . . ¢ v vt v 4 v o s o o o o s o o o o o o o

CONCLUSIONS

...........

iii

Page

S O U W R

O O

10
11

12
13
13
14
15
16
17
17
17
19
19
20

21

22

26

SUMMARY

Using the digital computer in real-time aircraft propulsion control systems re-
quires extensive use of assembly-language programming. Because this language is far
removed from the actual control equations, significant control-software evaluation and
debugging problems often occur. Therefore, software is needed to alleviate these
problems.

Presently available debug software is not sufficient to raise operator-computer in-
teraction to the level where software evaluation and debugging become acceptable.
Therefore, a higher level debug program was developed. This program uses informa-
tion supplied by the computer's assembler and loader and by the operator to simplify
problem recognition and to permit straightforward modifications to the software being
debugged.

Addressing techniques are used that allow operator-computer interaction by means
of easily recognizable names and relative addresses as they appear in the source list-
ing. Many data formats are available, including one that specifies data in engineering
units., An instruction coder and decoder allow program instructions to be specified by
their assembler mnemonic representation and to be evaluated during execution of the
program that is to be debugged. Thus, the operator need not be concerned with actual
machine coding. Execution terminators are included that, when used, will stop debug
execution of the program if certain prespecified conditions are encountered. The oper-
ator may specify execution termination when conditions are encountered that modify the
program counter or the selected memory locations or that cause arithmetic overflows.
Other features incorporated into the debug program include an on-line assembler that
makes it easier to modify the program that is to be debugged.

The debug program is described in detail in this report. The debug commands,
their sequencing, and their options are described and illustrated. Functional dia-
grams of the debug program are given in the appendix.

INTRODUCTION

Recent advances in digital computer hardware have enhanced its use in control ap-
plications. Controls requiring extensive computations and logical decisions, such as
those for modern aircraft propulsion systems, are particularly well suited for imple-
mentation on a digital computer. Aircraft propulsion controls, however, are usually
bound by stringent computation-time limits,

Computation speed depends on the programming language used to implement the
control equations. In general, the more removed the programming language is from the
basic machine instruction set, the slower is its computation. Therefore, computation-
time limits often preclude the use of higher order languages that offer a format close to
the actual control equations and force the programmer to use assembly language. Be-
cause assembly language is far removed from the actual control equations, significant
program debugging problems may be encountered,

Debugging consists of analyzing and modifying the assembly-language program, It
may be done through direct operator-computer interaction, which is itself very prone to
error because of the bookkeeping involved, or through a buffer program that raises this
interaction to a more comprehensible level, Although such programs (referred to as
debug programs) are usually available with every computer, they are generally not ex-
tensive enough to meet the needs of the control-system programmer. The debug pro-
gram described in this report offers more versatile addressing, display, execution,
and on-line assembly capabilities than previous debug programs. It was written for the
Honeywell HDC-601 flight-qualified computer and the Honeywell DDP-516/316 compu-
ter. The philosophy and techniques used in developing the program are described in de-
tail so that the concepts can be applied to other computers. Because this report is also
intended as a users guide, operational details and examples are given.

The control-software debugging process requires operational data for software
evaluation, These data are generally collected by running the software in conjunction
with the system to be controlled (or a real-time simulation of the system). The data-
collection process is made simpler by a data-collecting and display program called
INFORM (ref. 1). This program is a high-level, operator~computer interaction pro-
gram described in this report offers more versatile addressing, display, execution, and
on-line assembly capabilities than previous debug programs. It was written for the
software evaluation and modification capabilities to the control programmer,

GENERAL CONSIDERATIONS

The debug program was written for the Honeywell HDC-601 flight-qualified com-
puter and the Honeywell DDP-516/316 computer., The program depends on the compu-
ter architecture and instruction set. The computers are described in detail in refer-
ences 2 and 3. The HDC-601 uses a 16-bit word with the most significant bit designated
as bit 1. The computer has four manipulative registers:

(1) A register (AREG) - the primary arithmetic and utility register

(2) B register (BREG) - the secondary arithmetic register

(3) X register XREG) - the index rigister

(4) KEYS - the register used to contain machine status information

The computer uses sectorized addressing: Memory is divided into 512-word sectors.
Communication within a sector is done directly, but communication between sectors
must be done indirectly through intersector references. The one exception is that com-
munication with the first memory sector can be made directly from any sector. Inter-
sector references, therefore, can be stored in the first sector. The computer's assem-
bler and loader also allow an area within each sector to be set aside for intersector ref-
erences, This area is referred to as the sector base area.

The HDC-601 instruction set can be divided into two categories: those requiring an
operand, and those not requiring an operand. Instructions requiring an operand are

(1) Memory reference instructions

(2) Input-output instructions

(3) Shift instructions
Each instruction has a three~character, assembly-language mnemonic representation
and a machine-language operational code (op-code). These considerations and those of
the preceding paragraph are important to the structuring of the debug program and must
be considered in using the program concepts to formulate debug programs for other
digital computers.

The basic philosophy of the debug program development was to use assembler-,
loader-, and operator-supplied information to provide operator-computer interaction in
an understandable format. The assembler supplies a source listing and a table of
source names. The debug program uses these names to simplify operator address
recognition. The loader supplies the relocation base addresses and the locations of
sector base areas. The debug program uses them to eliminate the need for absolute
address specification and to efficiently automate program modifications. Through
INFORM, the operator may assign scale factors and names to memory addresses. This
allows data to be specified directly in engineering units.

The computer's instruction set is incorporated into the debug program. Because
both the mnemonics and the op-codes are included, program modifications can be
structured in assembly language without resorting to machine coding. Conversely,
machine coding for program listings can be automatically interpreted in an easily under~-
standable format,

Because the command structure of the debug program is fully compatible with the
command structure of INFORM (ref. 1), the programmer can incorporate any INFORM
commands with any debug commands for an evaluation and modification program that
suits his needs.

DEBUG PROGRAM CAPABILITIES

The capabilities of the debug program are

(1) Initialization

(2) Addressing

(3) Information display

(4) Program modifications

(5) Execution and analysis
Each capability is discussed in general in this section to give an understanding of the
program concepts. Detailed program descriptions and operational examples are given

in subsequent sections.

Initialization

The debug program must be initialized before execution to provide the information
necessary to its operation. That is, memory areas must be specified to contain
(1) The debug name tables (source names assigned to addresses within the program
to be debugged)
(2) The debug on-line assembler's buffer (the area used to assemble operator-
supplied instructions)
(3) Program additions (the area assigned for additions to the program being de-
bugged)
(4) The INFORM name tables (names and scale factors assigned to any memory
address when INFORM commands are being used)
In addition, the operator may specify a protected memory area that cannot be violated
during debug execution of his software. After memory-area assignments are speci-
fied, the operator may specify the sector base areas and fill the name tables, The de-
bug name tables may be filled manually (e.g., keyboard) or automatically (e.g., paper
tape) by entering the table of source names obtained during assembly of the program
that is to be debugged. Any number of programs or subroutines can be debugged simul-
taneously, and the source-name assignment is limited only by the area set aside.

Addressing

Flexible operator-address specification is offered in the debug program. It allows
referencing of an absolute octal address, a source name, an INFORM name, and a re-
locatable octal address. Arithmetic-address stringing is permitted in combinations of
the preceding. In addition, special addressing - including undefined addressing, index-

ing, and indirect address specification - is available for instruction operands during
on-line assembly.

Two locations, called the first and last address counters, are used to specify the
initial and final address limits for debug commands. The first address counter is also
used to establish the base address for address displacements. When a source name or
a relocatable octal address is specified, the first address counter is used to determine
which program is being debugged and which source-name table is referenced. The re-
location base for this program (specified during initialization) is added to the specified
address to form the absolute address. With this address mode the operator may easily
work from the source listing of the program currently being debugged. An address for-
mat is available to reference names external to the current program.

Inform ation Display

An information display package is contained in the debug program. Any of the four
registers (AREG, BREG, XREG, and KEYS) or any memory location or series of mem-~
ory locations can be displayed in an operator-selected format. Display formats are
available for octal integers, decimal single- and double-precision integers, and decimal
floating-point numbers. (Because all decimal displays can be descaled, the display can
be in engineering units.) Display formats are also available that specify the address as
containing ASCII characters or a direct-address constant.

Additional display formats are available for memory display only. Display of the
effective address of a direct-address constant (deciphering of the indirect chain) and
display of block-zero storage (the number of successive addresses containing zero) may
be specificd. In addition, the address may be specified to contain an instruction that
will cause the display of the mnemonic and operand, if any. If the instruction is a
memory-referencing instruction, the status of the index and indirect indicators is also
displaved.

Two displav modes are available: the print mode and the list mode. The print
mode simply lists the address and its contents in the specified format. The list mode
produces a listing similar to that of the machine assembler. Only the print mode is
available for register display.

It is often preferable to scparate the display commands from the information to be
displayed. This capability is incorporated in the display package: The operator can in-
put commands from one unit (e.g., teletype) and have the display appear on another unit
(e.g., line printer).

Program Modifications

The debugging process often involves significant program and data modifications.
Without a comprehensive debug package the operator is forced either to frequently as-
semble the source program and reload the resulting object program or to modify the
machine language. Both alternatives are time consuming and the latter is particularly
prone to error. By incorporating an on-line assembler, the debug program discussed
in this report provides a quick turnaround for all program modifications.

The debug assembler is similar to the machine assembler in that location, instruc-
tion, and address fields must be specified., The location field is used to specify the
relative location of the entry in the program modification, The instruction field is used
to specily the instruction mnemonic and for indirect referencing. The address field is
used to specify the instruction operand if necessary.

All the machine-instruction mnemonics are available, In addition, pseudo-operation
mnemonics (pseudo-ops) are available to specify octal entries, scaled or unscaled deci-
mal integer or floating-point entries, direct-address constants, ASCII information, and
block storage requirements.

Address specification has been defined. Special addressing is available to refer-
ence location-field entries or to postpone address definition. All addresses must be de-
fined before the program modification input is completed.

When the operator signals the input to be complete, the program modifications are
assembled. The machine coding is formed and the required intersector referencing is
computed from the sector base information supplied during initialization. A source
listing is then provided for operator verification., The operator may revise the modifi-
cations or signal their incorporation into this program.

If the modifications are actually additions to the program, they are placed in the
program addition area specified during initialization., Linkages between the programs
and the addition are automatically determined.

At any time the operator may transfer the modified program from memory to per-
manent storage (e.g., paper tape). Verification and loading capabilities are incorpor-
ated. Transfer from one memory location to another, with masking of selected bits, is

permitted.

Execution and Analysis

The debug program provides a method of execution and analysis that minimizes the
possibility of damage to the program to be debugged and maximizes the execution op-
tions. The program to be debugged is not executed directly in the debug execution rou-
tine. Rather, each instruction is lifted from the program, analyzed, and rebuilt for

6

execution inside the routine. All machine registers are synthesized. The first address
counter is used as the pseudo program counter, and internal locations are set aside as
the pseudo instruction register. The registers AREG, BREG, XREG, and KEYS are
also synthesized as pseudoregisters. With this method of execution, control never
leaves the debug execution routine. By using instruction analysis combined with the
execution mode commands, the operator can avoid inadvertent destruction of his pro-
gram by programming errors.

When the content of the first address counter is set, the execution routine returns
the vital statistics of the instruction to be executed: a complete listing of the instruc-~
tion, the contents of the direct address of memory reference instructions, the effective
address of these instructions (deciphering both indirect chains and indexing), and the
contents of the pseudoregisters. The operator is advised if the instruction is not exe-
cutable or if a protected area is about to be violated.

After the listing, the operator can transfer control to another debug routine to ob-
tain additional information, to modify his program, or to change the pseudoregisters.
Alternatively, he can execute his program either on an instruction-to-instruction basis
or by using one of the following execution modes:

(1) Execute to the termination address specified by the last address counter

(2) Execute to a memory-modifying instruction

(3) Execute to a program-counter-modifying instruction

(4) Execute until an overflow condition exists

(5) Any combination of the above
A permissive memory area may be specified to change the execution termination by
memory-modifier instructions. Thus, the operator can prohibit data storage outside a
selected program area. When a terminator is encountered, the described listing is
produced and the options are again available.

Although breakpoints are not necessary for execution, they are necessary to termi

nate actual execution of the operator's program. These breakpoints are used to trans-
fer program control from the operator's program to the debug program. Debug com-
mands are available to insert and delete breakpoints and to transfer control back to the
operator's program. Control can be transferred from the debug program to the opera-
tor's program either directly or through a preset initial-condition program.

A debug routine is used to build on-line and execute subroutines within the debug
program. These subroutines can be used to supply initial conditions for control trans-
fers or to structure additional debug routines as desired by the operator.

PROGRAM DESCRIPTION

This section provides background information for understanding debug command
operation. The debug commands are described in the next section. The various debug
routines are described in detail in the appendix.

Command Structure

The debug program begins with the command structure. Command characters are
deciphered here, and the appropriate command routine is entered from this structure,
Most returns, on completion of command execution, and most error returns are made
to the command struture. The logic is shown in figure 1. The command structure al-
lows the operator to specify INFORM commands as well as debug commands. The
INFORM commands are described in reference 1 and are designated by using nonalpha-
numeric keyboard characters. Debug commands are specified by using control-
alphanumeric characters. Each command character is assigned a subroutine name.
When the operator specifies a command character, the corresponding command sub-
routine is determined and program control is transferred to this subroutine.

Since all command characters are assigned subroutine names, unwanted commands
must be satisfied with returns to the command structure when loading the program.

The operator can therefore tailor an INFORM-debug program to suit a particular need
during the program-loading process.

As indicated in figure 1, command operands can be prespecified in terms of a
name. Prespecified operands are used for INFORM commands only. This feature is
useful for debug commands, however, in that the INFORM name table may be refer-
enced by the debug address specification routines. The INFORM names differ from de-
bug names in that scale factors as well as addresses may be assigned to the names.
These statistics are assigned in the command structure. Debug name tables are filled

during execution of a particular command.,

Name Assignments

The operator can assign names to any memory location. A name can have as many
as five alphanumeric characters. Each character is packed in truncated ASCII (six
binary bits per character) into two memory words. Figure 2 illustrates the method
used. The most significant 2} characters are packed into the primary name word, and
the least significant 22 characters are packed into the secondary name word. Parallel
tables are used to contain the primary and secondary name words. A third parallel
table is used to hold the address assignment of the name,

8

Figure 3 illustrates the structure of the name tables for debug names. Because
multiple sequential tables are allowed for debug names, the operator can assign a list
of names that correspond to the source listing of each program to be debugged. The
first location of each primary-name-word table is set to zero to indicate the start of a
new name list. The first location of each secondary-name-word table is used to specify
the number of names in the name list. The first location of each address table contains
the relocation base of the program, which is determined during program loading.

Address Formats

Addressing is used to specify operands for the debug commands and to satisfy the
address requirements of the debug assembler. Several format options are available to
the operator through address delimiters and postaddress delimiters.

An address delimiter may be specified instead of a name. Allowable address de-
limiters are given in table I. Delimiters ""APOSTROPHE'" and "' /"' must be directly
followed by an octal address. Delimiters '"*'' and ""SPACE'' allow the first address
counter to be referenced as an address. Delimiters '"$'' and '":"' may only be used for
assembler addresses (not for command operands) and must be followed by a decimal
statement number, With the exception of the ""SPACE"' delimiter, all address delimi-
ters require entry of a postaddress delimiter.

After the initial address is determined, the postaddress delimiter is interrogated,
These delimiters are given in table II. Delimiters '""+'' and "'-'" of table II are used for
address stringing. An address string consists of an initial address entry followed by
any number of octal or decimal numbers or the ASCIH '"B'' character separated by the
"itt op Mt delimiters, Specifying B in the address string causes an external bias
address (set through an INFORM command) to be inserted in the string.

The ", " delimiter is used to specify assembler address indexing and is prohibited
for command operands. This delimiter must be directly followed by the '""SPACE"
postaddress delimiter.

Failure to enter a proper address or postaddress delimiter will cause an error
message, followed by an error return, to be issued. Failure to specify a name that
exists in the name table specified in the address initialization routines will also result in
an error message and an error return. One exception to this occurs if the name is ter-
minated with the ASCII ', '! delimiter. In this case, the name is assumed to be unique,
and all debug name tables are searched. If the name is not located, the INFORM name
table is searched. If it is still not located, an error message and error return are is~
sued. If the name is found, the name table containing that name is determined and con-
trol returns to the operator entry point. The operator canthen specify aname contained
in this new name table. In this way, access is allowed to any name in any name table.

Debug Assembler

The debug assembler is used in all debug commands requiring on-line instruction
coding. The sequenced operation requires source-statement input in a format like that
used in the regular machine assembler (location, instruction, and address fields).
When assembly is completed, a source listing is provided for operator verification.

The location field is five spaces long. It is used to structure the statement entries
according to decimal statement numbers as well as to define previously undefined ad-
dresses. Location-field entries are also used to signal completion of source-statement
entry, to delete statements, and to abort statement entry by a return to the debug com-
mand structure, Allowable location-field entries are given in table III, Decimal in-
tegers n are used to specify the location of a source statement within the source-
statement structure. Thus the operator can easily modify previous statement entries.
All statement entries must be sequentially numbered, starting with zero.

Previously undefined address-field entries must be defined before completion of
source-statement entry is signaled. They are defined by referencing the undefined ad-
dress $n in the location field. The location-field entry number immediately following
this reference replaces the undefined address as it occurs in all previous instruction
entries.

The maximum source-statement number (limited by the size of the assembler buffer
to 64) is saved in an instruction counter and used to specify the number of memory loca-
tions used by the operator's program, This number may be modified by the "M'"' com-
mand in the locationfield. The '"'\'"'" command is used to specify the completion of a
source-statement entry, and the ""R'' command is used to abort the source-statement
entry.

After a source-statement number is entered in the location field, the program
spaces the input device to the instruction field. The instruction field is six spaces long.
Allowable instruction-field entries are given in table IV. Any machine instruction
mnemonic or any posudo-op mnemonic given in table V is allowed. Each ASCII charac-
ter of a mnemonic entry is truncated to five binary bits. The alphabet is thus trans-
lated into binary numbers ranging from 00001 for A to 11010 for Z. The ASCII num-
ber characters from 1 to 4 are translated by subtracting octal 226 from the ASCII code.
These numbers are then binary coded as 11011 to 11110. Since each mnemonic is three
characters long, it can be represented by a single 16-bit word (see ref. 2 for HDC-601
instruction mnemonics).

Indirect addressing is specified by appending the ASCII ''*'' character to the in-
struction mnemonic. This character signals the end of the instruction~field entry. If
indirect addressing is not desired, the ASCII ""'SPACE'"' character is used to terminate

10

the mnemonic and to signal the end of the instruction-field entry. The input device is
then spaced to the address field if an instruction operand is required.

Assembler addresses are available to reference as yet undefined addresses or
source-statement numbers, These are "'$n'' and '':n,'' respectively, where n is a
decimal integer as defined for the location field.

The pseudo-operations of table V allow the operator to specify data formats and
direct-address constants and to reserve block-storage locations, Each pseudo-op re-
quires an address-field entry. Octal integer data can be entered in unsigned 6-digit
format (negative numbers are represented in two's complement). Decimal data can be
scaled by terminating the entry with a ASCII ''/*' character followed by a scale factor
(see the section Scaling)., An ASCII data entry must be preceded by a decimal number
that indicates the number of locations it will consume (two characters per location).
Any locations not filled by the operator will be filled with ''SPACE'' characters. Indi-
rect addressing and indexing are allowed. For block storage, the operator specifies
the decimal number of locations to be reserved.

When the operator signals completion of source-statement entry '"\'', the source
program is assembled. The source program, as well as all intersector reference re-
quirements, is listed for operator verification, The listing format for memory refer-
ence instructions is given in figure 4. The listing format for other types of instruc-
tions and pseudo-operations is similar, with the exception of the address field. If the
operator is satisfied, the resulting machine-coded object program is transferred from
the assembler buffer to permanent storage. If the listing is unsatisfactory, the opera-
tor can either edit the source program or cancel the job,

Scaling

The operator can desighate scale factors to be assigned to input or output data.
This feature is available for data display or in conjunction with any of the assembler's
decimal pseudo-operations (DEC, FPC, and DPC). Scale factors can be specified by a
number of means, as given in table VI: Ratios giving the number of engineering units
per machine unit may be specified directly. A ratio may also be specified to be that en-
tered for an INFORM name. A scale factor, representing the ratio of voltage to ma-
chine units of the analog-to-digital converter in the control system, is stored internally
in the program and can be referenced for any variable. Binary scaling is permitted.
The ratio of engineering to machine units for binary scaling is oM /32 768, where nn
is a decimal number specified by the operator. It is also possible to default the scale
factor to the last entered value,

11

DEBUG COMMANDS

This section describes the command routines and their use. Eleven commands are
available in the debug program. The command structure can be modified to add or de-
lete commands according to need. Command routines are entered by using ASCII con~
trol characters (represented by underscoring the corresponding alphabet character in
all tables and figures). Table VII lists the debug command routines, their entry char-
acters, and their descriptions and references their functional diagrams (given in figs.
17 to 40).

Completion of each command routine {except RDEBUG, to be described) returns
program control to the command structure (fig. 17). This is indicated by the ASCII
""" character. In many cases (particularly in specifying command operands), opera-
tor error also causes a return to the command structure. Other errors may simply
cause a return to the start of the current entry. The operator can intentionally cause
an error return to the command structure at any time by using the ASCII ''#'' charac-
ter. One other special error character is used in the program: the ASCH '""RUB OUT"
character., This character is used in name specification to cancel previously input
name characters and to start again. Debug error messages, their descriptions, and
their consequences are summarized in table VIII,

Figure 5 presents an assembly-language program to be debugged and illustrates
the use of each debug command. It is not intended for any purpose other than illustra~
tion. The figure gives the location in memory of each instruction or data word, the oc-
tal contents of the location, the name assigned to the location if any, the instruction or
pseudo-op mnemonic as defined in reference 2, and the address-field reference. The
purpose of each instruction is stated, The program consists of a main program start-
ing at X1 and a subroutine starting at Y1. The X1 program has a sector base area
starting at “14735. In this area, one intersector reference location is used and two lo-~
cations are available for use. The Y1 subroutine is located in a different sector
(*15000) than the X1 program and has no sector base area. The subroutine name YYY
and its starting location Y1 are equivalent and refer to the same location,

Each command routine is described and illustrated in this section. The seguencing
steps and options for each command routine are also given in terms of required opera-
tor entries and terminations, The program's response, if any, to each entry is indi-
cated. Certain sequencing steps are common to many of the command routines. These
steps are used for address specification, scale-factor specification, and on-line assem-
bly. Sequencing for these operations is given in tables IX, X, and XI, respectively.

12

Initialization Command - YDEBUG

With the command routine YDEBUG the operator can reserve memory locations to
contain

(1) INFORM name and statistics tables

(2) Debug name and address tables

(3) On-line program additions

(4) Debug assembler buffer
In addition, the operator can protect a memory area from violation during program
execution when using XDEBUG. This memory area usually is that containing the debug
program but can be any selected memory area,

The sequencing and use of this command are given in figure 6. On entry the opera~
tor must specify the desired area of initialization INFORM, debug, or protect). Sepa-
rate entry must be made for each initialization area.

INFORM initialization requires that the start of its tables (e.g., *16000) and the
number of names allowed (e.g., ~24) be specified. Since tables must be reserved for
the primary and secondary name words and the address and scale-factor (two words)
assignments, the actual number of machine locations reserved for INFORM name speci-
fication is five times the number of names to be entered plus overhead. After specifi-
cation, the next available memory location (e.g., ~16426) is displayed for the operator.

Debug initialization requires that the program addition area (e.g., ~16426) be spec-
ified. This area must be contained within a single sector. The assembler buffer must
immediately follow the program addition area (e.g., ~16700). Therefore, specification
of this buffer's location limits the size of the program addition area. The assembler
buffer is prespecified to be 64 locations long. Debug name table initialization requires
that both the first location (e.g., “~17000) and the number of names to be entered
(e.g., ~24) be specified. The actual number of locations reserved for debug names is
three times the number of names to be entered. After specification, the next available
memory location (e.g., ~17074) is displayed for the operator.

Protect initialization requires that the initial and final locations of the area to be
protected (e.g., ~ 15000 < ~15003) be specified. If these locations are not initialized,
no area will be protected.

Source-Name Input Command - UDEBUG

With the command routine UDEBUG the operator can specify debug source-name
and address assignments. The sequencing and use of this command are given in fig-
ure 7. Names assigned to different programs or subroutines must be specified on sep~
arate entries into UDEBUG, On entry the operator must specify the relocation base of

13

the program (e.g., ~ 14740 for program XXX and * 15000 for program YYY). Name and
address assignments can then be made. In general, names should correspond to the
names in the operator's source program, with at least one name being unique to this
program (e.g., the program name XXX)., This allows a specific name table to be ref-
erenced when more than one program is being debugged. More than one name can be
assigned to a location (e.g., XXX and XI assigned to ~14740). All name entries are
terminated with a space.

The address entry must be made in octal and preceded by a zero. Any characters,
except '"W, ' between the name terminator and the start of the address will be ignored.
Relocatable addresses are terminated by a ""SPACE!"' or a ""CARRIAGE RETURN._ "
These are stored directly in the address table (e.g., “00 represents location ~14740).
Absolute addresses must be terminated by "'A,''" The relocation base is subtracted
from the entry before storage (e.g., ~014775A is stored as * 35).

Completion of the name and address entries is signaled by a '"W'' in the address
field. Any name may precede this entry. This termination corresponds to the source~
name-table termination of the HDC-601 assembler listing ''0000 WARNING OR ERROR
FLAGS'"). When the name and address assignments are completed, the accumulated
number of locations used in the primary-name-table area is displayed in octal. This
includes the initial location of each table used for table statistics.

At any time before entering a name, the operator may change the input device num-
ber by starting a line with '";'' character. This was not done in the example since all
names were entered from a single device. The command routine UDEBUG will ignore
any line beginning with '"*'" and ending with a '"CARRIAGE RETURN,'" This allows for

the insertion of comments,

Sector Base Statistics Command - BDEBUG

With the command routine BDEBUG the operator can initialize the sector base
tables used by the debug assembler to form intersector references. The sequencing
and use of this command are given in figure 8. For each sector used by the programs
to be debugged, the operator should describe any area used for intersector referencing
by the loader. This allows the assembler to use existing references and thereby opti-
mize memory usage. If additional locations adjacent to this area are available for new
references, this should also be indicated. As a minimum, an area in sector zero
should be set aside for the creation of intersector references. This sector is used as
the default sector if no other area is available.

Ninety-six locations are reserved in BDEBUG to contain the base sector statistics.
Three locations per sector are used to store the following information:

14

(1) The first location containing an intersector reference (e.g., *~14735)

(2) The first location available for a new reference (e.g., ~14736)

(3) The last location available for a new reference (e.g., ~14737)
This permits sector base tables to be initialized for all sectors contained in a 16K com-
puter, Initialization must be in octal and be preceded by the octal sector number
(e.g., “24). All sector base statistics can be specified on a single entry to BDEBUG,
Failure to specify for any sector indicates that no sector base area is available in that
sector. A return to the command structure is made by specifying '"R'' in place of a
sector number.

Display Command - PDEBUG

With command routine PDEBUG the operator can selectively display the contents of
the memory or the pseudoregisters. The sequencing and use of this command are given
in figure 9. For illustration, the names ""NL'' and ""PH'' were defined, by using
INFORM (ref. 1), to have the scale factors 2000 rpm/32 000 machine units and 10 psi/
32 000 machine units, respectively.

On entry the operator specifies the initial (and final if a block} location of memory
to be displayed or indicates the register to be displayed. He then enters a format num-
ber to indicate the type of display desired. Allowable format numbers are given in
table XII. Format numbers 6 and 7 are available for memory display only. The inter-
pretation of format 7 depends on the display mode selected. Two display modes are
available: The print mode (selected by terminating the format number with a ""SPACE!"")
simply displays the contents of the selected cell or cells in the chosen format; the list
mode (selected by terminating the format number with a '""CARRIAGE RETURN") lists
the selected cell or cells as illustrated in figure 4.

In the example (fig. 9), pseudoregisters A and B are first printed in octal. This is
followed by scaled display of each register (initiated by ''/'') using direct scale-factor
specification, indirect specification by referencing first '"NL'" and then '""PH, ' and
voltage scale-factor specification ''V.,'' Two examples of using binary scaling of the
pseudoregister AREG are then given, Finally, the pseudoregister AREG is displayed in
double-precision format. This causes the pseudoregisters AREG and BREG to be con-
sidered as a signed, 30-bit, double-precision integer. The attempt to display the
pseudoregister BREG in double-precision format is not allowed and produces an error.
Any double-precision referencing of an odd memory address also produces an error.

The remainder of the example illustrates memory display using all format numbers
in the print mode and format number 7 in the list mode. Various types of address spe-
cification are used for illustration. Location M5 is displayed by first pointing to a
unique name in program XXX and then the specific name M5. Once the current table

15

indicator has been set by this process, further specification of XXX names need not be
prefixed by a unique name. Also after the first list mode example, the first address
counter (pseudo program counter) is the same as the last address counter, namely
X2-1. The next list mode example using first address counter +1 displays location X2.

An additional feature of PDEBUG is presented in the example. If instead of termi-
nating a format number with a ""SPACE'' or '""CARRIAGE RETURN'"' an ASCII ''="' char-
acter is specified, the net result of address stringing is printed.

Modification Command - CDE BUG

With the command routine CDEBUG the operator can change the contents of mem-
ory or of any pseudoregister, The sequencing and use of this command are given in
figure 10.

On entry, the first and last address counters are specified for memory modifica-
tions. The first address counter contains the first memory location to be changed. The
last address counter need not be specified. I it is, it will not limit the number of mem-
ory locations that can be changed. This limit (64) is set by the length of the assembler
buffer. However, if a last address is specified and the number of locations changed by
the operator is less than that indicated by the difference between the last and first ad-
dress counters, the remaining locations will be filled with the last assembler entry.
Thus sections of memory can be filled with a constant value. The example illustrates
scaled-data entry into the five locations reserved for SDAT. Since only four locations
are entered, the fifth location is loaded with the fourth entry. These changes were in-
corporated into the program ("'Y'' response to ''GO ?'"),

If on entry, a pseudoregister change is specified, more than a single register can
be modified (note second CDEBUG entry in example), The pseudoregisters are stored
in the debug program in the following order: AREG, BREG, XREG, and KEYS (in this
case " 35622 to ~ 35625, respectively). Therefore, if an AREG change is indicated, all
four registers can be modified by four assembler statements., If a location beyond the
pseudoregister KEYS will be modified, the operator is advised and the modification
command is aborted.

The third entry into CDEBUG illustrates the assembler's handling of intersector
references. The intersector reference for Y1 already existed in the sector base area
of program X1, The intersector reference for Y2+1 did not exist and was therefore
formed by the assembler (note listing of location ~14736). These modifications were
not incorporated into the program (*'N'' response to ''GO ?''), The command was abor-
ted by specifying '""R'' in the location field,

16

Program Addition Command - ADEBUG

With the command routine ADEBUG the operator can insert additional statements
into his program. The sequencing and use of this command are given in figure 11.

Specification of the first address counter indicates the location of the insertion. All
additions are stored in the program addition area specified during initialization. If the
original content of the insertion address is to be maintained, it must be included in the
additions. (In the example listing, a jump through an intersector reference, inserted at
X2-3 (*14750), is used to link the addition to the program.) The return from the addi-
tion to the program must be included in the addition by the operator.

Subroutine Specification and Execution Command - VDEBUG

The command routine VDEBUG is used for on-line structuring and execution of sub-
routines. These subroutines can be used for any purpose, including the on-line building
of additional debug command routines. The sequencing and use of this command are
given in figure 12.

On entry the first address counter specifies the location of the subroutine. The op~
erator must then specify whether a subroutine is to be structured ("'I'') or executed
("'X") or if a return to the command structure is desired (''R'"). After subroutine
structuring is completed, this specification is again required.

The usage example illustrates the structuring and execution of a routine to output
the ASCII data contained in location ADAT to the teletype. The subroutine is placed
starting at location Y2+1 (*15004). The statement specification illustrates the use of
statement number (':'") and undefined address referencing (''$'') in the assembler. The
first location is reserved for the return address (a ''BSS'' entry results in a '"BSZ' re-
sponse). The return from the subroutine is made in statement 13. Sector 0 is used for
intersector references. Sector 15 base tables were not initialized in BDEBUG.

After the operator verifies the listing, he signals transfer of the subroutine to its
permanent location ("'Y'' response to ''GO?'"), He then elects to execute the routine
("'X'"). The routine is executed and the characters '""AB'' printed. The next entry to
VDEBUG illustrates execution without subroutine structuring.

Program Execution Command - XDEBUG

The command routine XDEBUG is used to execute instructions contained in the pro-
gram to be debugged. The sequencing and use of this command are given in figure 13.
On entry the first and last address counters are initialized. The first address counter

17

I

I

specifies the first location to be executed. The last address counter is an absolute exe~
cution terminator. Any instruction encountered that violates the area protected in
YDEBUG will also terminate.

Other execution terminators are optionally available to the operator. He can ter-
minate execution when an instruction is encountered that

(1) Modifies memory outside a specified override area ("'M'")

(2) Modifies the program counter (jump and call instructions) (''P'")

(3) Causes the machine overflow latch to be set ("'O'")

These terminators must be set before each execution command. Any combination of
the preceding can be specified, All terminators are reset whenever execution is ter-
minated and on entry to XDEBUG.

Commands are available within XDEBUG to reset the machine overflow latch (*'C'")
and to specify a memory override area (''A'') used in conjunction with the memory-
modification terminator. With this override area, a memory-modifying instruction can
be executed even through the terminator is set, as long as the effective address of the
instruction falls within the override area. If no override area is desired, a ''-'"' is en-
tered after the ""A' command instead of address specification.

Two execution modes are available in XDEBUG:

(1) Single-instruction execution

(2) Execution to termination
The example illustrates the use of the terminators and execution modes. The first
entry to XDEBUG demonstrates the single-instruction execution mode. Execution is
specified from X1 through X2-7. The listing of the first instruction is then provided for
the operator. It gives the status of the pseudoregisters (AREG = *37200). The KEYS
are displayed with the four most significant bits in binary and the last six bits in octal.
The remaining bits of the KEYS are meaningless. After the listing, the operator indi-
cates single-instruction execution by the ""SPACE'! character. Execution terminators
cannot be used in the single-instruction execution mode. The first instruction (CRA -
clear AREG) is executed and the listing of the next instruction is provided. In this case
it is a memory reference instruction (STA -~ store AREG) and therefore the effective ad-
dress is also displayed (*14757). Since indexing or indirect referencing is not speci-
fied in this instruction, the effective address is the same as the direct address. The
contents of the direct address before execution are also provided in the listing (fig. 4).
The single-instruction execution mode is continued until a return to the command struc-
ture is specified ("'R'').

The second entry to XDEBUG illustrates the use of terminators. Initially, sense
switch 1 is set, Execution from and to statement X1 is specified (i.e., the first and
last address counters are set to X1). After the listing of the first instruction, the oper-
ator elects execution to the first program-counter modifier ("'P4''). This instruction

18

L

is encountered at ~14750. The operator then elects to set the memory override area
to be the single location YHLD, He then specifies execution to the first memory modi-
fier (""M#''). This instruction is encountered atlocation ~14747. (Incrementing the index
register modifies location 0.) If he then elects to execute the program without optional
termination ("'1'"), he encounters a protect violation at ~14753, 15001, and ~15002. If
he chooses to ignore these violations, he continues execution until he reaches the loca-
tion specified by the contents of the last address counter (*14740). Sense switch 1 is
then reset so that the instruction in location * 14752 (set machine overflow latch) is en-
countered, Execution to overflow is specified ("'Ot''). Execution is, therefore, ter-
minated at *~ 14752 and the next instruction is listed. The operator next resets the ma-
chine overflow latch ("'C'') and continues execution (''t'') until a protect violation is
about to occur. He then returns to the command structure (f'R'").

Breakpoint Command - SDEBUG

With the command routine SDEBUG the operator can insert and delete breakpoints
in the program to be debugged. Breakpoints identify the occurrence of particular pro-
gram conditions. The sequencing of this command is given in figure 14, The usage ex-
ample for this command is discussed in the following section (Return Command -
RDEBUG),

The first address counter specifies breakpoint location. The operator then speci-
fies either '"'S'" to set a breakpoint or ""R'"' to restore the original contents of the break-
point. Five breakpoints can be inserted at any one time. Breakpoint locations and
their original contents are stored in parallel address and content buffers contained in
SDEBUG,

Inserting a breakpoint replaces the program instruction with a call instruction
made to a reentry location in SDEBUG. The original instruction is saved. The call is
made by using memory location ~ 20 as an intersector reference. Program control is
then returned to the command structure. When a breakpoint is encountered and
SDEBUG is reentered, all priority interrupts are inhibited, the registers are stored in
their pseudolocations, and the operator is advised of the encounter.

Return Command - RDEBUG

The command routine RDEBUG transfers control from the debug program to any
other program in the machinc. The sequencing and use of this command are given in
figure 15.

19

Returns from the debug program can be made directly or through an initial condi-
tion program. On entry the operator specifies the return location by setting the first
address counter and the initial-condition routine by setting the last address counter, If
the last address counter is not set, no initial-condition routine is executed. The return
begins when the address-counter specification is completed.

The usage example illustrates the use of both RDEBUG and SDEBUG, A breakpoint
is set at location ~14742. The original content of this location is displayed in octal, and
control is returned to the command structure. The listing of *14742 shows the call
through intersector reference location ~ 20, which replaces the original content. The
content of ~ 20 (~25504) is the reentry location in SDEBUG. Command routine RDEBUG
is then entered from the command structure, and a direct return from the debug pro-
gram is specified. In program X1 the breakpoint at *~ 14742 is encountered and indicated
to the operator. Control then returns to the command structure. The operator deletes
the breakpoint by using SDEBUG, and ~ 14742 is again listed, showing its original con-
tents to be restored. Command routine RDEBUG is again entered, and this time an
initial-condition program is specified to be that subroutine programmed in the VDEBUG
example., The return location is set to be X1. A call to the initial-condition routine is
made (""AB'' printed), and control is transferred to location X1.

Transfer Command - TDEBUG

The command routine TDEBUG transfers the contents of a block of memory to
another block of memory or to an output device, fills memory from an input device, and
verifies all input-output transfers. The sequencing and use of this command are given
in figure 16.

On entry the address counters are initialized. These counters specify the first
(e.g., XXX-SDAT) and last XXX.SDAT+4) addresses of the memory block to be trans-
ferred or verified. In the example, the first TDEBUG entry illustrates a memory-to-
memory transfer., After the memory block and transfer type (''M'') are specified, the
first location to receive the transfer is specified (*15040). The transfer mask, which
is used to delete bits from the transferred memory word, must then be specified
(* 177777 for no bit modification). Any bit not set to 1 in the mask is deleted. After
the transfer mask is specified, the memory transfer is made. The display command is

then used to verify the transfer.
The next three entries to TDEBUG demonstrate input-output transfers and verifica-

tion. In each case the input-output device number must be specified.

20

CONCLUSIONS

The debug program described herein offers a high level of operator-computer com-
munication to ease the debugging process of complex assembly-language control pro-
grams. Information supplied by the computer's assembler and loader and pertinent
program information supplied by the operator are used to provide communication in an
easily understandable format, Communication is done through the use of identifiable
names, flexible addressing, and on-line program assembly capabilities.

Eleven debug commands provide the operator with sufficient options to simplify the
execution, analysis, and modification of his program and reduce program turnaround
time. The program execution command contains instruction diagnostics to reduce the
possibility of program destruction by program errors. Displays are available to help
the operator analyze the program and to advise him of his status within the debug pro-
gram. Program modifications and additions are easily incorporated on line by an ex-
tensive debug assembler. The capability to structure subroutines to aid in the debug
process is also offered.

Most of the bookkeeping required in the debug process is handled by the debug pro-
gram. Hard copy of the debug process is easily obtained by using the display routines.
Flexibility in input-output device selection offers a versatile means of information
transfer.

The command structure of the debug program allows the programmer to insert ad-
ditional debug commands. The program is compatible with the data-analysis-and-
display program INFORM. The ability to selectively incorporate INFORM and debug
commands allows the structuring of debug and analysis programs that are tailored to
meet the specific needs of the programmer.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, November 20, 1978,
505-05.

APPENDIX - DESCRIPTION OF DEBUG PROGRAM

Diagrams illustrating the structure of the DEBUG program and the mechanics of its
various routines are presented in this appendix. Certain parts (particularly the on-line
assembler) are necessarily peculiar to the HDC-601 computer. Functional statements
are used throughout so that the program can be easily adapted to other computers,

The basic input-output routines used for operator command and display are not
diagrammed since they are generally straightforward and extremely machine dependent.
Other routines contained in INFORM are also omitted except where necessary to the
understanding of the debug program. The INFORM routines that are referenced but not
diagrammed are

(1) TTYR - general-purpose number input

(2) TTYR2 - same as TTYR but with the first character prespecified by the pro-

gram

(3) INPT - character input

(4) LOAD - general-purpose loader

(5) VERIFY - general-purpose verifier

(6) PUNCH - general-purpose binary dump routine

(7) C$24 - floating-point to double-precision integer conversion
These routines are described in reference 1.

The nomenclature used in the diagrams is as follows:

(1) Subroutine names are given in parentheses (e.g., (NAME))

(2) Location names are given in brackets (e.g., [CSUB})

(3) ASCII characters are given in quotation marks (e.g., '"A'")

(4) ASCII control characters are understored (e.g., A)

The functional statements are boxed. If more than one result can occur from execution
of a statement, the results are indicated on linkage lines emanating from the statement
box. All program messages are omitted from the functional diagrams for simplicity.

The command structure, given in figure 17, shows the debug command subroutines.
Some of the INFORM command subroutines are also shown. See reference 1 for a com-
plete description of INFORM's capabilities. Figures 18 to 28 are functional diagrams
of the debug command subroutines. These routines are straightforward and are dis-
cussed in detail in the main body of this report. Appendix figures 29 to 39 are function-
al diagrams of utility routines required to support many of the debug command sub-
routines.

Figure 29 illustrates the structure of the on-line assembler. It consists of three
parts:

(1) PTCH is used for location-field entries, to input assembler commands, and to

sequence assembler events.

22

(2) CMDI is used for instruction- and address-field entries,

(3) ASEM is used to form the machine coding (object program) corresponding to the
source-field entries.

These assembler routines require the support of additional subroutines: LIST (fig. 30),
FNDI (fig. 31), FNDM (fig. 31), GSFR (fig. 32), SBSE (fig. 33), and TRAN (fig. 34).

In CMDI, two special buffers (with 64 locations each) hold the instruction- and
address-field entries. If the instruction is a memory-reference instruction, the in-
struction op-code is stored in the instruction buffer and the positive address is stored
in the address buffer. If the address is a location-field number, the second least sig-
nificant bit (bit 15) of the instruction word is set. If the address is undefined, the least
significant bit (bit 16) is set. Shift instructions have the op-code stored in the instruc-
tion buffer and the negative shift count stored in the address buffer. This number is al-
ways greater than 177700 (-64). All other machine instructions and pseudo-op oper-
ands are self-contained within the instruction word. Special codes are used to distin-
guish these instructions for the assembler and listing programs. These codes are given
in table XIII.

Subroutine FNDI contains the instruction mnemonic words and their corresponding
op-codes in parallel tables. This routine is used to obtain op-codes from mnemonic
specification by CMDI, This routine also returns the instruction type (memory refer-
ence, shift, etc.) for address-field determinations.

Subroutine FNDM is the inverse of FNDI. A mnemonic is returned that corre-
sponds to a specified instruction. The instruction type is indicated. This routine is
used in the source listing procedure,

When the operator signals completion of source-statement entry, control is trans-
ferred to subroutine ASEM for assembly. The address buffer is interrogated to deter-
mine the instruction type. I it is a shift instruction (-64<ADDRESS<0), the shift count
is combined with the op-code and stored in the corresponding assembler buffer location.
If it is a memory-reference instruction (Q=ADDRESS), intersector referencing is com-
puted by using SBSE and sector base statistics supplied by BDEBUG and modified by
TRAN, I external indirect reference generation is required, the instruction counter is
incremented and the external address is added to the end of the instruction buffer. The
original address is appended by the indirect and index modifier bits as set in the origi-
nal instruction word and stored in the corresponding assembler buffer location. Ad-
dress code 8 (table XIII) is stored in the corresponding address buffer location for in-
terrogation by the transfer routine TRAN. The original address buffer location is mod-
ified to contain the external address. The index modifier bit of the original instruction
word is reset, and the indirect modifier bit is set. The instruction is then reassembled.
Memory reference instructions not requiring intersector referencing are combined with
the corresponding address buffer word and stored in the assembler buffer.

23

When assembly is completed, PTCH lists the source program by using the LIST
subroutine, as well as listing all intersector reference requirements for operator veri-
fication. Verification is indicated in TRAN, If the operator is satisfied, he signals for
program transfer from the assembler buffer to permanent storage. Routine TRAN does
the transfer and also modifies external addresses (CODS8) as required for intersector
referencing. TRAN modifies the sector base statistics (see section Sector Base Sta-
tistics Command - BDEBUG) to reflect the addition of intersector references.

With the scaling routine GSFR the operator can designate scale factors to be as-
signed to input or output data. This routine is used for assembler decimal data entry
and also in the PDEBUG command routine,

Figures 35 to 40 illustrate the debug address and name specification and handling
routines. Addressing is used to specify operands for the debug commands and to sat-
isfy the address requirements of the debug assembler.

Subroutine CMMP (fig. 35) is used for command operand specification, It initial-
izes the first and last address counters with addresses obtained through GETN (de-
scribed below). If only a single operand is specified, the address counters are set the
same. Operator errors leave the address counters unaffected, and an error return
from CMMP is made. Correct operand specification causes the current program indi-
cator to be computed through CSET (fig. 36).

In subroutine CSET, the contents of the first address counter are compared with
the relocation base of the various address tables. The maximum base value that is less
than the contents of the first address counter is determined, and the address of the cor-
responding primary-name table is stored in a location reserved for the current pro-
gram indicator.

Subroutines GETN and ADRS (fig. 37) initialize the address specification subroutine
GETA. Subroutine GETN specifies the debug name table; subroutine ADRS specifies
the INFORM name table and prohibits address indexing and the special assembler ad-
dress formats. Subroutine CMCK (fig. 37) flags special assembler address formats as
errors when warranted,

Subroutine GETA (fig. 38) is a general-purpose operator address specification rou-
tine. It is used for all addressing in both INFORM and the debug program. Initializa-
tion and entry must be made through GETN or ADRS, Certain implicit initializations
are also required. The operator is allowed to reference a special external-bias ad-
dress set through an INFORM command. Referencing of this address is allowed only
after the address stringing delimiters (see below). The first address counter is used
by address displacement delimiters (see below) as the reference address. It is gener-
ally set when specifying command operands in CMMP but may also be set in the
ADEBUG, PDEBUG, and XDEBUG command routines (see the section DEBUG
COMMANDS),

24

On entry to GETA, a versatile address input format is available to the operator
through the use of address delimiters and postaddress delimiters. The NAME subrou-
tine (fig. 39) specifies either a name or an address delimiter. If a name is entered,
the name table specified by GETN or ADRS is searched. If the name is found, the cor-
responding address is determined. The termination character of the name entry speci-
fies the postaddress delimiter.

Subroutine NAME is used for operator name specification, The primary and sec-
ondary name words are formed and made common to other routines. Any character
other than an alphanumeric, a delimiter, will terminate the name entry. The termi-
nating character is tested to insure proper name entry in the calling routines. If no
name is entered, the name words are filled with '""SPACE'' characters, and the delimi-
ter entered is treated as a command by the calling routines. This subroutine is used
to input most INFORM and debug names.

Subroutine NFIN (fig. 40) locates a name assigned to a specified address. All
name tables are searched. K the address is located, the corresponding name words
are returned. If the address cannot be located, NFIN returns name words filled with
""SPACE'' characters.

Subroutine FIND (fig. 40) obtains the displacement of a specified name from the
start of a name table. On entry the table to be searched and the displacement between
the primary and secondary name tables must be specified (since FIND can interrogate
INFORM tables also). An error exit is used if the name cannot be found. The dis-
placement is used by the calling routine to determine the address assigned to the name.

25

REFERENCES
1. Cwynar, David S.: INFORM - An Interactive Data Collection and Display Program
with Debugging Capability, NASA TP-1424, 1979.

2. HDC-601 Digital Computer Programmers Reference Manual. Honeywell Aerospace
Division, St. Petersburg, Fla, Apr. 1971.

3. HDC-601 Digital Computer Software Systems Description. Honeywell Aerospace
Division, St. Petersburg, Fla., Aug. 1972.

26

TABLE I. - ALLOWABLE ADDRESS DELIMITERS

Address
delimiter

Description

*

/
SPACE

APOSTROPHE | Indicates that absolute octal entry follows

Specifies first address counter as entry
Indicates that relative octal entry follows
Specifies first address counter plus 1 as entry

Indicates that a defined assembler address follows

Indicates that an undefined assembler address follows

TABLE II, - ALLOWABLE POSTADDRESS DELIMITERS

Postaddress
delimiter

Description

SPACE

Indicates address addition
Indicates address subtraction

Signals completion of address entry
Specifies a unique name

Assembler address indexing (must be followed by SPACE)

TABLE II. - ALLOWABLE ASSEMBLER LOCATION-FIELD

ENTRIES

Location-
field
entry

Description

$n

o g -

Indicates location of following instruction in operators
program (n = decimal integer, 0 = n = 63)

Indicates that following location defines undefined
address, $n (n = decimal integer, 0 = n < 63)

Indicates completion of operator's instruction entries

Allows operator to view and modify the location counter

Returns to INFORM/debug command structure

27

TABLE VI, ~ ALLOWABLE SCALE-FACTOR ENTRIES

Scale-factor Description
entry

E.U./M.U. | Directly specifies ratio of engineering unit (E.U,) to
machine unit (M. U.)

NAME Specifies scale factor assigned to @ name in INFORM
table

v Specifies voltage scaling (10 volts/32 000 M.U.)

* Defaults to last entered scale factor

B(nn) Specifies binary scaling, where (nn) represents any

+ or - integer. (@™ E.U./32768 M.U.)

TABLE V. - ALLOWABLE PSEUDO-OPERATION

MNEMONICS

Mnemonic Address-field entry

OCT Octal integer data '

DEC Decimal integer data

FPC Decimal floating-point data
BCI ASCII data

DPC Decimal double~precision integer data
DAC Direct-address constant
BSS Block-storage reservation

BSZ Block-zero storage reservation

TABLE IV, - ALLOWABLE ASSEMBLER INSTRUCTION-FIELD ENTRIES

Instruction- Description
field
entry

APOSTROPHE | Indicates entry of an instruction or datum coded in octal
(The OCT pseudo-operation may also be used for
octal data entry.)

XXX Instruction mnemonic (where XXX is any machine in-
struction mnemonic)
YYY Pseudo-operation mnemonic (where YYY is any pseudo-

operation defined in table VIIT)

Specifies indirect addressing (also signals completion of
instruction-field entry)

SPACE Signals completion of instruction-field entry

TABLE VII. - DEBUG COMMAND ROUTINES

2Underscoring denotes ASCII control character.

Error message
?
X?
NOT EX
CSET
PV
OVFLON

OVFLOP

FORMAT
NO $ REF

$n
OVFLOM
OVFLOB
SPOF

$N
OVFLOA

IDR>32

8?

TABLE VIII. - DEBUG ERROR MESSAGES

Meaning

Nonrecoverable error

Execution command error

Nonexecutable instruction encountered
in XDEBUG

Last instruction executed in XDEBUG
caused overflow latch to be set

Execution of following instruction
will cause protect violation

Overflow of debug name tables using
UDEBUG

Overflow of program addition area
using ADEBUG

Assembler format error

Operator tried to define a nonexistent
undefined address reference

Operator failed to define undefined
address reference $n

Overflow of assembler's buffer or
instrument buffer (64 locations)

No intersector reference locations
are available

Single-precision overflow

Name specification error

Specified address is negative

Indefinite indirect chain encoun-~
tered in XDEBUG

SDEBUG error

Routine Entry Figure Description

command®
YDEBUG Y 18 Initializes debug and INFORM programs
UDEBUG U 19 Assigns debug source names and addresses
BDEBUG B 20 Initializes sector base statistics
PDEBUG P 21 Displays memory or register
CDEBUG C 22 Modifies program or pseudoregister
ADEBUG A 23 Inserts additional statements into program
VDEBUG v 24 Specifies and executes subroutine
XDEBUG X 25 Executes program
SDEBUG 5 26 Inserts or deletes breakpoint
RDEBUG R 27 Returns to program
TDEBUG T 28 Transfers memory from block to block

Program control transfer

Command structure

XDEBUG command input and decoder
Command structure

None

None

Command structure

Debug assembler's reentry location

None

Command structure
Start of NAME
Command structure
None

Command structure

29

TABLE IX. - SEQUENCING FOR ADDRESS-FIELD SPECIFICATION

TABLE X. - SEQUENCING FOR SCALE-FACTOR SPECIFICATION

30

Step | Enter | Terminate | Response | Go to step
la (Name) None 1
1b (Name) None 2
ic | @Octal)
1d | /(ctal)
le *
1f SPACE
2a | SPACE Exit
2b |+
2¢ |- Y
2d |, 1
3 SPACE None Exit
Y
Step Enter Terminate | Response | Go to step
Tl [SF= 1
la | (Decimal) | SPACE / 2
1b | * None None Exit
le |V None Exit
1d |« None 3
le | Bnn SPACE Exit
2 (Decimal) SPACE Exit
(Name) SPACE Exit
Y

Description

Temporarily specifies name table that
contains entry

Specifies name in specified name table

Specifies absolute octal address

Specifies relative octal address

Specifies first address counter as
address

Specifies first address counter plus 1
as address

Terminates address entry; returns to
calling program

Indicates address addition

Indicates address subtraction

Specifies address indexing

Terminates address entry; returns to

calling program

Description

Advises operator of scale-factor entry
requirement

Specifies engineering units (numerator)

Specifies last scale~-factor entry as
scale factor

Specifies 10 volts/32 000 machine units
as scale factor

Indicates use of INFORM name for spe-
cification

Specifies 2™"/32 768 as scale factor

Specifies machine units (denominator)

Uses scale factor specified for
INFORM name

Step

la

ib

ic

id
le
2a
2b
3a
3b
3c
3d
3e

4a
4b
4c
4d

4e
4f
5a
5b

TABLE XI. - SEQUENCING FOR ON-LINE ASSEMBLER

Enter Terminate | Response | Go to step Description
R None None Return Terminates command and return to command
structure
\ None Listing Exit Indicates end of entries. Returns to calling
program
M None Output 2 Advises operator of location count and per-
mit change
(Decimal) SPACE Spaces Specifies location-field entry number
$ (Decimal) SPACE CRLF i Specifies undefined address definition
, None Indicates no change in location count
(Decimal) SPACE Specifies location count
(Octal) SPACE Octal data and instruction entry
(Mnemonic) SPACE Spaces 4 Mnemonic entry requiring address
* Spaces 4 Mnemonic entry requiring indirect address
SPACE Spaces 5 Mnemonic entry requiring operand
SPACE CRLF 1 Mnemonic entry not requiring address or
operand
Address SPACE CRLF Specifies address
Address s 1 CRLF Specifies address with indexing
(Decimal) SPACE CRLF Specifies location number as address
(Decimal) , 1 CRLF Specifies location number as address with
indexing
$ Decimal) SPACE CRLF Specifies undefined address
$ (Decimal) , 1 CRLF Specifies undefined address with indexing
(Number) SPACE CRLF Specifies operand
(Number) / SF= Specifies sealed operand (used with decimal~
\} entry pseudo-operations only)
TABLE XII. - FORMAT NUMBERS FOR DISPLAY COMMAND
Format Display type
number
0 Six-digit octal
1 Decimal integer
2 Decimal floating point
3 ASCH
4 Double-precision decimal integer
5 Direct-address constant
g Block storage (displays number of successive zero locations)
2 Effective-address contents (print mode)
a4 Machine instruction (list mode)
/ Scaled floating-point decimal (see section Scaling and table X)

2Available for memory display only.

31

32

TABLE XIII, - ASSEMBLER ADDRESS-FIELD CODING

Code | Octal Description
value
0 177000 | Specifies octal integer data
1 177001 | Specifies decimal integer data
2 177002 | Specified decimal floating-point data
3 177003 | Specified ASCIH data
4 177004 | Specifies double-precision integer data
5 177005 | Specifies direct-address constant
6 177006 | Specifies block-storage reservation
7 177007 { Specifies nonmemory reference instructions
8 177010 | Specifies external address constants required

by assembler for intersector referencing

Enter INFORMdebug
program

Operator command/name
specification

Name entered J Command entered

i |

Yes| No No | Did operator enter an

Has name been defined? I [| ASCII control character ?

I

Operator enters associated
address

Operator enters associated
scale factor

!

Store name and statistics
in memory area reserved
for INFORM names

Use specified name
as prespecified

INFORM command
operand

INFORM command entered

Check INFORM command
list and execute corres-

ponding INFORM command
routine (ref. 1)

Debug command entered

|

Check debug command
list and execute cor-

responding debug
command routine

Figure 1. - Functional diagram of command structure.

F‘F\'IMAR&NAME WORD SELONTARY NAME WORD

s Ny .
EIT: 1 2345067 8% 1011 12 13 14 10 16 L2 3406789 10 1112 13 14 15 16

000001000 0 0 1 0 1 0 O 001 o0 1 01 0 1 0 06 o0 1 1 1
\ /7 \ A /N
‘1(—‘\._w__ v v \a —\

N

NOT n E R u G
USED

Figure 2, - Character packing for name words.

33

34

FRIMARY NAME

WORD TARLE

000000
1), NAME

LAST NoME
QU000
16T, NAME

LAST NAME

000000
1GT NAME

LAST NAME

LOcAaYIne o

— Nak

¥
1 Nl

~

LUt ATTUN
Fivih

e

Figure 3.

INSTRUCTTUN ¢

AGH

LGNED

[

SECONIARY NAME
WORD TARLE

NUMBER OF NAMES
18T. NAME

LAST NAME
NUMBER OF
18T, NAME

NAMES

LAST NAME

NUMHER OF
151, NAME

NAMES

.

.
LAST N&ME ———

_ Format of debug name and address tables.

neraL)

0 LOCATION

= LNCATTON CONTENTS (¢

|
.

o

QCTAL

ALNDRESS
TABLE

¥ RELOCATION BASE

18T. ADDRESS

.

LAST ANLRESS
RELOCATION RASE
18T, ADDRESS

.
LAST ADDRESS

.
RELDCATION BASE
15T. ALDRESS

LAST ADDRESS

)

~ INSTRUCTION MNEUMONLC

F
El
0

IRST
UBROUTINE
I

FROGRAM
T0 EBE
DEBUGGELD

SECOND
SUBROUTINE

LAST
SUBROUTINE

~1e% FOR INDTRECTs "SFACE" IF NOT.

— AIDKESS REFCRENCE €

v v

>
MMM 1) AAAANC

d —

-

INGTRUCTION
FIELD

(X"

¥
X

OCTAL

)

SFACF

IF NOT.

— NAME ASSIGNED TO AINRESS

r‘ADDRESS CONTENTS ¢ GCTaL)

y1* FOKR TNIEXING e
i
v
ANAMI ALACAT

Figure 4 - Source listing format for memory reference instructions.

Octal Location Location Instruction Address Comments

location contents name field field
14735 025000 Ist location used for intersector reference
14736 000000 1st location available for intersector reference
14737 000000 Last location available for intersector reference
14740 140040 X1 CRA Program start. Clear A register.
14741 011757 STA YHLD Store A register in 14757
14742 073760 LDX M5 Load X register with -5
14743 105761 LDA* YDAC Load A register indirect from 14761
14744 023757 CAS YHLD Compare A register to YHLD
14745 011757 STA YHLD Here if > YHLD, store A register in YHLD
14746 101000 NOP Here if = YHLD, no operation
14747 024000 IRS 0 Here if < YHLD, increment X register. Skip if zero
14750 003743 JMP *-5 Jump to 14743
14751 101020 Ss1 Skip if sense switch 1 set
14752 140600 SCB Set overflow latch
14753 121735 X2 CALL YYY Call program YYY through indirect reference
14754 014757 DAC YHLD Direct address constant
14755 154776 DAC* YHLD,1 Direct address constant, indexed, indirect
14756 003740 JMP X1 Jump to 14740
14757 000000 YHLD BSZ 1 One location reserved for YHLD
14760 177773 M DEC ~5 Decimal integer

14761 054775 YDAC DAC EDAT,1 Direct address constant, indexed
14762 140702 ADAT BCI 2, ABC ASCII data

14763 141640

14764 037346 FDAT DEC 0.1 Floating point

14765 063146

14766 000000 DDAT DPC 4 Double precision

14767 000004

14770 000000 SDAT BSZ 5 Five locations reserved for SDAT
14771 000000

14772 000000

14773 000000

14774 000000

14775 177777 EDAT 0CT 177777 Octal integer

14776 000000 XHLD BSZ 1 One location reserved for XHLD
15000 000000 Y1 BSZ 1 Start of program YYY

15001 025000 IRS Yl Increment Y1 (return address)
15002 025000 IRS Yl Again

15003 103000 Y2 Jmp Y1l Return to calling program

Figure 5. - Example program for debug illustrations,

35

Step | Enter | Terminate | Response | Go to step- Description

1 Y - Y. IDP? 2 Enters YDEBUG from command structure

2a I { - START = 3 Indicates INFORM initialization

b D | ----- PATCH= 5 Indicates debug initialization

2 P | - = 9 Indicates protect-area initialization

3 Octal SPACE NUMBER = 4 Specifies start address of INFORM name tables
4 Display Return Specifies maximum number of INFORM names
5 ASMBL-= 6 Specifies start address of program addition area
6 NTABL= 7 Specifies start address of assembler buffer

7a NUMBER = 3 Specifies start address of debug name tables
I} # | - |- Return | Defaults debug name table statistics

8 Octal SPACE Display Return Specifies maximum number of debug names
9a Octal SPACE - 10 Specifies first location of protect area

9b ¥ mmmms | mmemmmees Return Specifies no area to be protected

10 Octal SPACE | ---—----- Return Specifies last location of protect area

(a) Sequencing.

«Y: IDP? I
START= '16000
NUMBR= *24
‘016426
«Y: IDP? D
PATCH= "16426
ASMBL="16700
NTABL= *17000
NUMBR= "24
*017074
«Y: IDP? PPz 15000 «'15003
-

(b} Example.

Figure 6. - Sequencing and use of YDEBUG command routine.

Step Enter Terminate Response { Go to step- Description R
1 U |- U: BASE= 2 Enters UDEBUG from command structure,
2 | Octal CARRIAGE RETURN | =~------- 3 Specifies relocation base for source-name entries
3a | Name SPACE] mmemmeee- 4 Specifies a source name
3b : --- 6 Indicates change of input device
3¢ | *Comment | CARRIAGE RETURN | ~-------- 3 Allows program to ignore comment lines
4a W - Display Return Terminates current program source-name entry
4 | Zero | mmmmmmmmmmmmmmemen | e 5 Indicates address entry
5a | Octal CARRIAGE RETURN | -------~- 3 Specifies relative address of source name
5b SPACE | ~=meemee- Specifies relative address of source name
5 A] e Specifies absolute address of source name
6 CARRIAGE RETURN | =--=----- Specifies input device number J

(a) Sequencing.
«U: BASE='14740

XXX 00

X1 00

X2 013
YHLD 017
M5 0zo0
YDAC 021
ADAT g22
FDAT 024
DDAT 026

030
EDAT 0147754
XHLD Q3§
0000 W
'000015
«J: BASE="15000

YYy 00
Yl s}
Y2 03
0000 W
"00002t

-

(b) Example.
Figure 7. - Sequencing and use of UDEBUG command routine.

Step

3a
3b

5a
Sb

Enter

Ter minate

Response
B:

Go to step-

2
Return
3
Return
4
Return
5
Return
2

Description

Enters BDEBUG from command structure

Terminates entries

Specifies sector number

Ter minates entries

Specifies first location used for intersector reference
Terminates entries

Specifies first location available for intersector reference
Terminates entries

(a) Sequencing.

LeH

‘0600

]

-

*60L "70C

“la '14735 '14736 14737

(b) Example,

Figure 8. - Sequencing and use of BDEBUG command routine,

Specifies last location available for intersector reference

37

38

Step| Enter [Terminate | Response | Go to step- Description
1 Py - P: 2 Enters PDEBUG from command structure
2a A | -), 5 Specifies display of pseudo A register
o} B | --—--), Specifies display of pseudo B register
2 x { -----), Specifies display of pseudo X register
2d K | -), Specifies display of pseudo K register
2% | Address?| SPACE | ----- 3 Specifies first address of memory to be displayed
3a |SPACE | ----- s 5 Indicates single display
3b < | | - 4 Indicates multiple display
4 | Address?| SPACE s 5 Specifies last address of memory to be displayed
5 | Decimal SPACE | ----- 6 Specifies display format
6a |SPACE | ----- Display Return Displays specified entry in print mode
6b CARRIAGE, ----- Display Return Displays specified entry in list mode
RETURNC
6c =€ e Display Return Displays memory address

9See table IX.
See tables X and XII.
CNot allowed for register display.

L,
~Fh,
“P3
“P:
«F:
-
P2
ks

T (), /L
s (8,7 o

Az *1e0
EERR S|
(h),0

),0

(A),/ &
(B),/ >
A,/ &
(RY,/ o

,
14770 ,1 .

(a) Sequencing.

[N SRV G

L

1ot oo

cerout

1
1-7 .«
SR T N 77
1T LS
147 7 4

i [VI1 S ¢
1a7e 1Ce741

1.7 15700

(b) Example.

Figure 9. - Sequencing and use of PDEBUG command routine.

s, ' -,

of number densities shown, the floating potential profiles were probably geometrically
similar over this range.

Figure 29 shows similar data for the same electrode but with negative polarity. Be-
cause both the ion saturation current and the electrode current were linearly proportional
to the average electron number density, the density profiles were probably geometrically
similar over the range of number densities shown. The particle confinement time was
almost independent of average number density over more than a factor-of-50 variation in
these quantities, and the floating potential varied relatively little over the same range.
The radial profiles of the floating potential were probably geometrically similar over the
range of number densities shown.

Estimated error

i

5,
T
T

O lon saturation voltage

@ Electrode current

A Floating potential

A Particle confinement time

T
R

!
!

—

BN
T

Electrode current, I, A; lon saturation voltage, V¢, V

T

T

Floating potential, Vi, V; particle confinement time, Tp, Msec
1=

Lt T e Lo Lol
Average electron number density, ng, cm™3

—

Figure 29, - Parametric variation of particle confinement time, floating potential, electrode cur-
rent, and jon saturation voltage (relative ion number density) as functions of average electron
number density - run series AJU (table IV).

39

40

Step Enter | Terminate | Response | Go to step- Description :

1 A) - A: 2 Enters ADEBUG from command structure
2 Addres%a SPACE | -—--- 3 Specifies address of program addition

3 Source 4 Enters assembler for addition specification
4a Y Return Inserts addition into program

4b N 3 Reenters assembler for changes

a5ee table IX,
See table X1.

(a) Sequencing.

“A: X2-3

o Lis YYYLYL RIdda

1 STA TYVaYor] ceect

2 Jhre hEN cree

\
16426 1tsal] Loa= 16431
16427 11143e LTax 18als
18430 102433 Jibk= 16410
16431 Olooct vAC 15000 YVY
16432 015uus VAL 15004
16433 014745 JAC 14742
14750 103736 JOPx 14736
14736 ol642 JAC 16426
Go? N

R

(b} Example.

Figure 11. - Sequencing and use of ADEBUG command routine.

Step| Enter
1) e
2 | Address?
3a I
3b X
3c R -—--
4 |Source® \
5a Y ----
5b N ----

35ee table IX.
bSee table XI.

Terminate

Ve YYY.Y2+]

IXR? 1

[¢] BSS 1, 00000

1 LDX It [s[elale]]

2 LDA XXXe ADAT ocLu2

3 1A8 00003

4 CRA 00004

5 LLL 8 0CcoLS

6 SKS ‘104 00no0s

7 JMP :6 oooc?

8 ocF "1C4 oous

S UTA ‘4 ouou9

10 JMP € uooic

[% I3s ‘0 cootll

12 JNP 4 ovole

13 JMPx :C oocld

$1

14 DEC -2 Cool4

N\
15004 [s]e]e]elelo] BSZ
15005 073022 LDX
15006 104600 LoA*
15007 coozol 1Ay
15010 140040 CrA
15C11 C41Q70 LLL
15012 0701¢4 S5KS
15013 ou3ol2 Jip
15014 030104 ocp
15015 17€004 0TA
15018 003CL4 JiP
15017 0z4a000 1as
15020 Q03010 Jap
15021 1c3cos J1p*
15022 177776 JeC
00600 014762 uAC
607 Y
1737 Xac
Vi Yo+l
I7n? HAs

Response
V:IXR?

Go to step-

Return
Return

5
3
4

Description

Enters VDEBUG from command structure
Specifies subroutine address

Specifies that subroutine is to be programmed
Specifies that subroutine is to be executed
Specifies return to command structure
Enters assembler for subroutine specification
Transfers subroutine to specified location
Reenters assembler for changes

(a) Sequencing.

cocol

15022 121726
00600 acoocc

(38

olo4

15012 cescle
0104

0c04

15014 1c372s
0ooee [slefelilE]e)
15010 121722
15004 111716
-o00ce

1a762 AUAT taniag

(b) Example.

Figure 12. - Sequencing and use of VDEBUG command routine,

41

Step | Enter | Terminate | Response | Go to step- Description

1 X] e X: 2 Enters X DEBUG from command structure

2 | Address® SPACE | ------ 3 Specifies first address to be executed

3a {SPACE | ----- Listing 5 Sets execution stop address to first address

3 Rl B I 4 Indicates stop address to be specified

4 | Address? SPACE | Listing 5 Specifies execution stop address

5a c | -] - Clears overflow latch (bit 1 of pseudo K register)

5h N e Sets memory modifier terminator

5¢ | e i Sets program counter modifier ter minator

5d o0 | - | e Sets overflow ter minator

Se A | - : 6 Indicates memory-modifier termination to be qualified
5f t | e Listing 5 Executes to stop address or as indicated by ter minators
59 | SPACE | --—--- Listing 5 Executes single instruction (terminators not applicable)
5h R | -] - Return Returns to command structure

6a |Address® SPACE | ------ 7 Specifies first address that can be modified

6 - | | - 5 Specifies memory-modifier termination not qualified
7a |SPACE | ----- | ------ 5 Indicates that only single location can be modified

7 < | e e 8 Indicates that memory area can be modified

8 | Address® SPACE | -—-—-- L 5 Specifies last address in area that can be modified

35ee table IX,
(a) Sequencing,
R XK KL XN R2-T

0372004 Los200s Y17773% 0001K00

14740 xRy 140040 CRA
COCo00A 006200 177773X GO01K00 D14757EFA
14741 011757 5ThA 14757 YHLD 0cCoo0
00000CA 0062000 177773X CO0IKOO0 01476CEFA
14742 C73760 LDX 14760 M5 177773
U00000A 60620038 177773% CO01KO0O0 014770EFA
14743 105761 LDA* 1478) YDAC 054775
1747004 0062001 177773 X 000L1XCO 014757EFA
14744 * 023757 CAS 14757 YHLU 000000
1747004 006200z 177773 X Q0CIKGO COOOGOEZFA
14747 0240¢0 I8 ovooe 0000CH
R
-
(b) Example.

Figure 13. - Sequencing and use of XDEBUG command routine.

42

«X: X1

1747004 006200 177773X CLOULACO

14740 RXR 140040 CiA
1747004 006200 177774% 0CO1KO0O C147432FA
14750 003743 JuP 14743 105761
AP: YHLD
M
006200A 0062003 177774% CUD1KCOo CLOONCEFA
14747 024000 1S oot ooruce
T
v -
014400A QCez00b 000000X QO01KLC 015C00EFA
14753 X2 21735 JST* 14735 015000
1T
PV
0144004 0C6 2005 [S[ee]eleler g 0o0lixoc QI5COCEZFA
15001 025000 IS 15000 YYY 014754
T
PV
014400A C06200s 00uaGoY. 00C1K00 Q150LL0ITA
15002 025000 I8 15000 YYY 014755

1
0144004 0062000 00C000X [eleleh p.qele]
14740 XXX 140040 CAA

(NOTE: AT THIS POINT 5ZNSE SWITCH 1 IS RISET)

ot
€ SET 014752

v 014400A 0068200 00000UX 1001X00 015000£FA

14753 X2 121735 JST* 14735 015000

ct

PV

014400A 0062008 000000X 0001K00 015000EFA
15001 0250600 I3s 15000 YYY 014754
R
(b) Concluded.
Figure 13, - Concluded.

Step| Enter FerminateTResponse Go to step- Deéé.rfption
1 S S: 2 Enters SDEBUG from command structure
2 | Address?| SPACE | ------- 3 Specifies breakpoint location
3 | SPACE | ~-——-- SR? 4 Options indicated
4a S | - Display | Return |Specifies set-breakpoint option
] R - Display Return | Specifies delete-breakpoint option

35¢ table IX.

Figure 14 - Sequencing of SDEBUG command routine.

43

44

Step | Enter | Terminate | Response | Go to step- Description
1 R | - R: 2 Enters RDEBUG from command structure
2 | Address? SPACE | ------ 3 Specifies return address ’
3a I B B 4 Indicates initial-condition routine to be executed
3b | SPACE | - | - 5 Indicates a direct return
4 | Address? SPACE | -——--- 5 Calls routine specified by entry
5 f-mmmmmm b e Return --- Transfers program control to return address

sge table IX,

(a) Sequencing,
L3 XXX K1+
‘Cl4a742 = 'GT376L

’
14742 120020 JST= 0G020 025504

'014742 = 073760
3 Xl «YYY.Y2+l Ab

(b) Example.

Figure 15, - Sequencing and use of RDEBUG command routine,

Step | Enter | Terminate | Response | Go to step- Description

1 I | - T: 2 Enters TDEBUG from command structure

2 | Address? SPACE | ------ 3 Specifies first address of memory to be transferred
3a [SPACE | ---- [--—-- 5 Transfers only single location

3b - R R 4 Indicates transfer of a memory area

4 | Address? SPACE | ------ 5 Specifies last address of memory to be transferred
5a P | - UNIT= 9 Indicates transfer to output device

Sb v | - UNIT= 9 Indicates verification against input device

5¢ L | ----- UNIT= 9 Indicates transfer from input device

5d Mmoo - T: 6 Indicates transfer to memory

6 | Address? SPACE | ------ 7 Specifies start of location to receive transfer

7 |SPACE | -—-—--— MASK= 8 Indicates no specification of last-address counter
8 | Octal SPACE | ------ Return Specifies six-digit octal mask and transfer

9 | Octal SPACE | ------ Return Specifies octal device number and transfer or verify

9see table IX,

(a) Sequencing.

T3 XKXSUAT «X¥X.GLAT+4
APLVT KD "15040

ASKs T177777

eFr VI OUAT «ZHXJSUAT+E 0

14770 = 174700
14771 = ca620C
14772 = [IR
14773 = Cl44L0
14774 = 614400
eFr 15040 <T1SUA0HE L0
15040 = 174700
15¢41 = cos2uu
15042 = cli3oc
15043 = 014400

15044 014400
+«T: SUAT «SLAT+4

WPLV? P OUNIT= "2

<13 SLAT €3LAT+4

FLV? OV JNIT=s '

«: SLAT

«T: SUAl «Suni+é

SPLV? LOULLITE ")
(b) Example.

Figure 16, - Sequencing and use of TDEBUG command routine,

Operator command/name
specification

(NAME)
INFORMdebug command
decoder
IIYII
| Initialize
INFORM name entry | | INFORM/debug
(YDEBUG)
I|UII
Learn INFORM name - =
and statistics Learn source
—=1 names and addresses
(UDEBUG)
Open specified data ngn
display table] B
Learn intersector
— reference statistics
Add to or modify (BDEBUG)
Opened data [npy
display table =
Display referenced
= memory or register
Close data - (PDEBUG)
display table g
Modify referenced
Output data display —=] memory or register
table in specified i (CDEBUG)
for mat e
Insert addition
Display scaled — toprogram
value of referenced | (ADEBUG)
name ||_/n
Execute operator
Display statistics —= supplied instructions
of referenced] (VDEBUG)
name nyr
Execute program
Overlay referenced l—{ statements
name with new name [=— (XDEBUG)
and statistics g
Set program
Scale and store |-—] breakpoint
(SDEBUG)
IIRII
Set external =
address hias =] Return to
location -1 program breakpoint
(RDEBUG)
Other INFORM | T
commands |] Transfer infor mation
(TDEBUG)

(a) INFORM commands.

{b) Debug commands.

Figure 17. - INFORM/debug command structure.

45

46

Enter YDEBUG from
command structure

uxn‘

Operator command specification
[INPT]

YDEBUG command decoder

”_I_“

Operator specification of start location

”D”

L_Error i

of INFORM name and statistics tables

Operator specification of
maximum allowable number

of INFORM names

Operator specification of start

||E||

Error ,

of area reserved for program
additions

Operator specification of start

of debug assembler buffer

Operator specification of start

location of source name and
address tables

Operator specification of
maximum allowable number
of source names

Operator specification of
initial and final locations

to be protected

0K
Error
0K
OK
l Error
0K
No
l Did operator
Error enter "' #'
character ?
0K
INADR]INADF] l Yes
Return to
f command
‘ structure
Error
0K
[BILN]
Advise operator of next
oK available iocation
Error
No Did operator enter

""#'' character? |[Yes

Other - 1
—-r Advise operator of error =

Return to command
structure

Figure 18. - Functional diagram of INFORM/debug initialization command (YDEBUG).

Enter UDEBUG from
command structure

v

Save current input device

number
!

Operator specification of
current program's
relocation base

!

Set address of current
program name counter
to [NADR1+[BILNI=[ACUI]

Increment INADR] |

!

Set location specified by
[NADR]! to zero to indicate
start of current name table

!

Set current program
name counter to 1

!

Store current program
relocation base in
location specified by
{NADR]+2IBILN]

Other

_Other

Operator entry of source Command
name or command
(NAME) l
- UDEBUG command
Name decoder
Operator entry of address —
field command character et Operator specification
—1 of new input device —
‘ number
Address field command
decoder -
tent Ignore all inputs
— until current line =1
W Restore current input completed
device numfer Other
Advise operator of total
number of source names
entered and store in total
counter
Return to command
structure
Increment current program
" \J A
ZERO Operator entry of octal name counter ACU]
address 1
l Add relocation base to address
R and store in location specified
Address termination by [NADR]+2[BILN]
uan | Subtract relocation base from Store primary and secondary
= octal entry for absolute name .buffers in locations
addressing specified by INADR] and
INADRI+[BILNI, respectively
"'SPACE'" or "'CR" J

Figure 19. - Functional diagram of source-name table input command (UDEBUG).

47

Enter BDEBUG from
command structure
IIEII
Command | Operator octal data/command | Octal data
input
BDEBUG command Store as sector number
decoder specification
= Return to command structure | Command | Operator octal data/command
input
Other
= Advise operator of error | Octal data

Store as first intersector
reference location in
specified sector [ASEC]

!

Command | Operator octal datalcommand
input

Octal data

Store as first intersector

reference location available

for use in specified sector
[BMIN]

Command | Operator octal data/command

input _l
1_0M

Store as last intersector
reference location available

for use in specified sector
[BMAX]

Figure 20. - Functional diagram of intersector reference statistics input command (BDEBUG).

Enter PDEBUG
from command structure

P

Operator address

Command counters/command Address
input
(CMMP)
PDEBUG command
decoder
Other
AN Store contents of pseudo Command Operator format/command
A A register in display input For mat number
location (TTYR)
g Store contents of pseudo Other e Operator input of scale
B register in display factor reference
location (GSFR)
Error Entry
e Store contents of pseudo) Default
X register in display
location
Set format number
for scaled display;
K Store contents of pseudo set ter minator for
KEYS in display focation print mode
Command Operator formaticommand Format termination
input decoder
Format number
nspace | Print mode: display addresses
Display location printed and their contents as specified
in selected format on by address counters
selected unit
"CARRIAGE List mode: list addresses
| Return to command structure RETURN" and their contents as
specified by address
counters (wIST)
i Operator input of scale
factor reference
(GSFR) ten Print contents of
Entry ' Error start address counter
e m—
Default
Other
Return to command structure l——-
Descale display location
— and print floating point
on selected unit
| Return to command structure I
Other

= ‘ -
| Advise operator of error |

!

| Return to command structure I

Figure 21. - Functional diagram of display command (PDEBUG).

49

50

Command

Enter CDEBUG from
command structure

||cul

Operator specification of
address counters or
commands

(CMMP)

Address

I.I(AII

CDEBUG command decoder |—

YR

Load location of 7
pseudo A register

e

Load location of
pseudo B register

K

Load location of
pseudo X register

No

Load location of pseudo KEYS |—w

!

Input, assemble, and list
operator instructions

(PTCH)
!

Verify that-transfer will
modify pseudoregisters
only

l Yes

Transfer assembler
buffer to pseudoregisters

or return (TRAN)

I Return

Transfer complete

—-| Return to command structure I

]

Other l

Advise operator of error l

Input, assemble, and list
operator instructions

(PTCH)

Transfer assembler buffer

to location specified by first

address counter or return
(TRAN)

Transfer complete | Return

Add number of words used
in assembler buffer to
first address counter

Yes

Verify that first address
counter equals last
address counter

} no

Increment first address counter
and store last buffer word in —

location specified by counter

L

[Return to command structure

Figure 22, - Functional diagram of register/memory change command (CDEBUG),

Enter ADEBUG from
command structure

||A||l

Operator specification of

Command address counters or
commands B
({CMMP)
Address

- " Enter VDEBUG
Input, assemble, and list from command structure
operator instructions
(PTCH) v l
l Operator specification of
- Command address counters or
Compute intersector reference = commands
to contain location of addition (CMMP)
(SBSE)
‘ Address
Compute instruction required l
for transfer to addition Operator specification
through intersector reference of VDEBUG commands
- l (INPT)
List instruction and J
intersector reference VDEBUG command
for verification decode
(LIST
. l Input, assembie, and list Ny
Transfer assembler buffer operator instructions
to location specified by (PTCH)
patch counter or return l
(TRAN} " I
Transfer assembler buffer
Transfer ¢ LE’(u_rn_— to location specified by first
address counter or return
Store addition location (TRAN)
in intersector reference Transfer complete | l Return
location
} ‘ - Execute a cail to location Gy
Increment counter of Advise operator of e”’°"J specified by first address
next available intersector counter

reference for current sector

1

Store instruction in
contents of first address

Return to command structure

counter Figure 24, - Functional diagram of subroutine specification and execution
‘ command (VDEBUG).
Update program patch
Advise operator of error l counter to reflect

current additions

I Return to command structuril

Figure 23, - Functional diagram of program addition command (ADEBUG).

51

(44

Operator specification of

Command -
———-—dese operator of error 1

‘&eturn to command structureJ

Enter XDEBUG from X address counters or
command structure commands
(CMMP)
Address
: : 0K | Decode and analyze
Display pseudoregisters and h . e)
effective address if applicable. | py L’(‘jztrre”?'c%r:] ;{’:f'f'ed by first
o . S
List instruction (LIST) (XSRH)
Reset all execution stap flags
[AFLG, [RFLGI, [FLOVI Yes

Is first address counter

equal to last address
counter ?

Operator command input

(INPT

TNO

Is [FLOV] set?

)

!

l Yes

nen

XDEBUG command decoder

TYes

A

Clear machine overflow latch

Advise operator of
overflow condition

—

l No
No
I Is machine overflow latch sﬂl——

—

Hpt

for memory modifying
instructions

Set execution stop latch

[AFLGI

PV

Decode and analyze
instruction specified by first
address counter (XSRH)

ok

for program counter

modifying instructions
I

Set execution stop latch

LGl

i

Is (AFLG] set? No
TYes
Is instruction a memory No

odifier ?
modifier (IAM]

,‘, Yes

€4

non

Set execution stop latch

for overflow condition
[FLOV]

o

Save current address counters

|

Operator specification of
address counters or
commands (CMMP)

Address

Define memory modifier override
area according to address counters.
Restore address counters

——

Command

Secondary XDEBUG
command decoder

n_n

Negate memory modifier
override area

Other I

Advise operator of error J——

t

No Is effective address
—————————| within memory modifier
‘ override area ?
Yes
No
Is [RFLG] set? =
l Yes
Yes Is instruction a program

counter modifier
[IJMP], [1JST]

No

r

Execute instruction
specified by first address

counter (XCUT)

"SPACE"

Execute instruction
specified by first address

counter (XCUT

-

-—-—’ Return to command structure

Figure 25, - Functional diagram of execution command (XDEBUG),

54

Enter XSRH

!

Reset instruction type
indicators
[TIMPILTJSTI IAM]

!

Search machine instruction
set for instruction specified
by first address counter

Return to command
structure

Execute normal
return from XSRH

f

Store instruction in
instruction simulator
location

No

(FNDM)
!

!

{ Is instruction executable ?

|lo—r Advise operator |

1 Yes

Is instruction a memory

Set subroutine
call indicator
{1JST]

Yes

reference instruction ?

| ves

Is instruction an unconditional
jump?

Set unconditional
jump indicator
[LJMP]

Ye

w

‘No

Is instruction a subroutine

call?

JNo

I's instruction a memory
modifier ?

No

‘ Yes

Set memory modifier
indicator
[IAM]

~Execute normal
return from XSRH

Obtain effective
address of instruction

1

Combine effective address
with instruction's index
ftags and store in

simulated address reference

|

Build instruction to contain
original op-code with
simulated address reference

as operand

Reset index flag and set
indirect flag

1

Store resulting
instruction in instruction
simulator location

Execute PV return

!

from XSRH

Is effective address
contained in protect
area specified in YDEBUG?

Yi ‘—J——l
% Advise operator

Figure 25. - Continued.

[enterxcur |
_

Yes ' Is instruction an
————— unconditional jump?
l [1JMP]

‘Store effective address l No
in first address counter - - -
— Is instruction a

subroutine call ? Yes
[1JSTI L 1
l No Add 1 to first address
— - counter and store in location
Load all registers specified by effective address

with contents of
pseudoregisters

l Ad& 1to eff&:tive address
and store in first

Increment first address counter
address counter —

!

Execute simulated
instruction

!

' Nbdify first address
counter to reflect any
conditional skips

Storé Edntents of all

registers into pseudo-
registers

[_Return from XCULI
Figure 25, - Concluded.

56

Enter SDEBUG from

command structure

Operator address counters/
command input (CMMP)

AddressT

‘| Command

{

Operator command
specification

(INPT)

Return to command
structure

—

Yes

!

SDEBUG command decoder

Search breakpoint address

Advise Found
operator| not fung
of error

buffer for location specified

by first address counter

Are five breakpoints
active?

lNo

Store content of first
address counter in

first vacant location in
breakpoint address buffer

Found
Search breakpoint address

buffer for location specified
by first address counter

|

Store content of location
specified by first address
counter in breakpoint
content buffer location
corresponding to address
buffer location

Other

Not found

Advise operator of error

!

ﬁeturn to command structure

P

!

Print breakpoint
location and its content

!

Store call to SDEBUG
reentry location in
breakpoint location

Store content of breakpoint con-
tent buffer location correspond-
ing to breakpoint address buffer
location specified by first ad-
dress counter into breakpoint
location

Reenter SDEBUG
from breakpoint

!

Inhibit all priority
interrupts

!

Store contents of all B
registers in pseudo-
registers

!

Print breakpoint location
and its content

Advise operator of return 7
from breakpoint and location

. 1 .

Return to command
structure

Figure 26. - Functional diagram of breakpoint command (SDEBUG).

Enter RDEBUG from
command structure

l 1 IBI)
Operator address

counters/command Command
input (CMMP)
l Address

Yes | Did operator set
last address counter ?

—N: Advise operator of error

1 Return to command structu;l

Call initial condition
subroutine specified
by content of last
address counter

Load registers with
contents of pseudo-
registers

!

Transfer program control
to location specified by
first address counter

Figure 27. - Functional diagram of program return instruction (RDEBUG),

58

Enter TDEBUG from

n]-_nl

Operator speci'fication of
address counters or

1 Address)
Operator command input

!

command structure ‘J

commands (CMMP)

(INPT) |

Command

TDEBUG command decoder

npu

Operator specification of

nyn

output device number

Error

Octal
entry

Binary output of area specified
by first and fast address
counters

(PUNCH)

——-'LRetu rn to command structureJ

Operator specification of

np

input device number

Error

Octal
entry

Input binary and compare

against area specified by first

and last address counters
(VERIFY)

——| Return to command structure

Operator specification of

input device number

Error

Octal
entry

Input binary and store in

area specified by first and

last address counters
(LOAD}

——I Return to command structure l

e

Save contents of first and
last address counter

Operator specification of
address counters or
commands (CMMP)

Command

‘_Address

Operator input of desired
mask

Error

Octal
entry

Transfer locations specified
by saved address counters,
masked as specified, to
area specified by first
address counter

r Advise operator of error

Iﬂaturn to command structui’

Figure 28. - Functional diagram of data transfer command (TDEBUG).

) Re>enter PTCH at operator

o

Save A register entry as
operator starting location
[PLCI

I R

Set location counter to zero
[MAX]

option after listing
(TRAN)

EXtPTCH |
List existing intersector

references used by
assembler (LIsT

f

List intersector reference
formed by assembler
[CODE) (LIST)

List assembled instruction

L

Reset undefined address flag
[DOLU

Location field command
specification by operator
(INPT)

Location field command

decoder

LReturn to command structtﬂ—R—

r

Do operator instructions
contain references to
undefined addresses ?

1 Yes

Advise operator of
undefined references

Assemble operator instruction

set

_ (LIST)

Location count command

using IPLC] as the base address
(ASEM)

Advise operator of location

Advise operator of format error

Error

Operator input of instruction
and address field corresponding

If [DOLL] set, replace corresponding
undefined addresses in previous
instructions with [TXX]

specification by operator

!

Location count command

decoder

Tnon
:

Other

Operator input of revised

Error

location count

) l oK
Store operator specified

count in location
counter [MAX]

fas—

Advise operator of

| formaterror

count [MAXI]

T

Fill remainder of location field

with spaces

Store [nl in location index (TXX]

Set undefined address flag
{DOLLI to number
indicated (n]

Il\ll
No
OK
bt
I|Ml|
n
$n
Other

{a) Part I{PTCH).

Figure 29, - Functional diagram of debug assembler.

U] I

59

60

Is [TXX] greater than length | Yes Advise operator error
Enter CMDI from PTCH of instruction buffer ? exit CMD1
l No
Clear instruction word;
set character counter to -3
Instruction character
input ANPT)
i
Instruction character decoder,
- '"'APOSTROPHE"
AY
\ Input octal instruction OK Is character counter
or octal data =-3?
Error No] Yes
| Error exit from CMDI
nn No
] Set indirect flag
" " I's character counter
v SPACE zero?
—‘——L Reset indirect flag Yes
Other | |s character a letter Letter
or a number less than 57 L
Number I No No I's character counter
‘ negative ?
Subtract 226 from number; | Error exit from CMDI ‘ Yes
truncate to 5-bit binary Truncate character to
No 5-bit bmar‘y
Increment character I's character counter Increment character
counter zero? counter
Yes

Shift instruction word left
5 bits and add character

Search instruction set
for mnemonic. Return
with op-code and type

(FNDI)

(b} Part II (CMDI).
Figure 29. - Continued.

Oxa

Store octal entry in
instruction word

!

Store octal entry
indicator [CODO] in address

word

Memory reference

Instruction not found l

I nput-output

Shift

OCT pseudo-op

7

Instruction type decoder

Obtain operator address entry ~ {Address
(GETN)
l Command
Error exit from CMDI
1 Error
Obtain operator argument oK
entry (Tocm
Obtain operator shift count oK
entry rocn

l Error

Error exit from CMDI

Other machine-executable instructions

Obtain operator octal entry

BSS, BSZ pseudo-op

Operator enter number [n] of
locations to be reserved
(TANY)

0K

l Error

DAC pseudo-op

Error exit from CMDI

f Error

Obtain operator address
entry (GETN)

} ok

Did operator enter an
undefined address ?

No

} ves

Error exit from cMpI |

BCI pseudo-op

1 Error

®

Operator enter number {n] of
words reserved for ASCII
infor mation

Form instruction word:
(1) Set indirect bit according

to indirect flag (BT 1/601)
(2) Set index flag according to
(GETN) index specification (BIT 2}
(3) Set op-code in bits 3to 6
{4) If undefined address, set bit 16
(5) If location-field address, set
bit 15

Combine op-code and
argument to form instruction.

Store instruction in
instruction word

[BREGI
i

Store address in address
word [AREG]

Store in instruction word
[BREGI

Store op-code in instruction word

Store machine instruction
indicator [COD7] in

address word [AREG]

[BREGI

Store op-code in instruction word

Store negative shift count
in a
in address word [AREG]

[BREGI

Is [TXX] + [Nl instruction

No

Store machine instruction
indicator (COD71 in

d d
address wor (BREG]

buffer length ?
l Yes

Filt [n] tocations of
instruction buffer with
zeros starting at location
specified by (TXX]. Fill
corresponding locations
of address buffer with
block~storage indicator

Advise operator error exit [CODél. Increment [TXX]
(CMDT) by (n - 1)
Modify address: é
(1} Set indirect bit according
to indirect flag

(2) Set index bit according to
(GETN) specifications

(3) If address is a location-field
address add [PLC]

Store address in instruction word

) (BREGI
!

Store direct address constant
indicator [COD5] in address word

[AREGI

{b) Continued.

Figure 29, - Continued.

61

62

lls [TXX] + [nl > instruction buffer length ?I-—Yi—

Advise operator
error exit

(CMDT)

Yes

iNo
Operator enter ASCII Did operator enter a
character carriage return
l No
Operator enter ASCII Store character in teft
character half of instruction word
Did operator enter Yes Store ASCII space

a carriage return

character in right half word

JNo

Store character in right half
of instruction word

!

Store instruction word in
instruction buffer specified

by [TXX]. Store ASCII data
indicator {COD3] in corresponding
address buffer location

Did operator enterizln]
characters

No

Increment [TXX]

©

{b) Continued.
Figure 29. - Continued.

Store instruction word in
instruction buffer specified
by [TXX]. Store ASCII data
r’ indicator [COD3] in corres-
ponding address buffer loca-
- tion increment [TXX]

Have {n] instructioﬁ

words been stored?

No

Store two ASCII sbéce

word

~+—1 characters in instruction

[mXxi-mxa -1

®

pPC pseudo—op[

€ pseudo-0p} qperator decimal data entry

B

. l R
FPC pseudo-op Operator decimal data entry

(TTYR}

(TTYR)

6perator d&imal data entry

Cali decimal data

ter mination decoder
(CKS2)

Conve;t to integer data
(cs21)

Store int;ger data in instruction
word. Store decimal data
indicator [COD1i in address word.

[call decimal data

termination decoder (CKS2)

Store mvo‘str significant word

of floating-point data in
instruction buffer location
specified by [TXX]. Store
floating-point indicator [COD2)
in corresponding address
buffer location.

Call decimal data

TTYR)

| Enter CKS2]

Yes | Did operator terminate decimal
data entry with a '/ "' ?

termination decoder (CKS2)
Convert to double-precision
data

i

——

(Ch24)

Store most significant word of
double-precision data in in-
struction buffer location speci-
fied by [TXX]. Store double-
precision indicator (COD4l in
corresponding address buffer
location.

[Save decimal data entry

Operator input of scale
factor reference
(GSFR)

Entry |

Defauft

scale-factor reference

-Di;iae?dé}ing—poi nt decimal
data entry by fioating-point

* Store result in decimal
data entry Ipcation

| matckse |

Error

>Error exit CMDI J

?

t ——— -

_ Yes[s [TXX) greater than
_SetIMAX] - [TXXI location counter [MAX]?

[Printxxa

Store least significant
word in instruction
word. Store [COD2
in address word,

Increment TXX1

Is [TXX] greater than length | No
of instruction buffer ?

Yes

Advise operator error exit
(CMDD)|

Yes

[1 (TXXI greater than length | No
of instruction buffer ?
S_tore |;ast significant
word in instruction
word. Store [CODA4]

in address word.
Increment [TXX]

O

Store instruction word in
instruction buffer word
specified by [TXX]

o VS?oir;address word in
corresponding address
buffer word

No
) Normg!r exit CMDI

(b} Conciuded.

Figure 29. - Continued.

P ncrement [XXT] and [TXXT}—*-

Enter ASEM from PTCH

!

Store location where assembled
program is to be located in [PBBS]

| obe located

Store sector number of
[PBBS] in [SSBVI

!

Set instruction buffer
index [TXXI and assembler
buffer index IXXT] to zero

!

Store instruction counter
[MAX] in instruction
limit [TMAX]

!

Set intersector bias counters

to zero
[ABIOIIABI1IABI2)

is [TXX1 > [TMAXI?

Exit ASEM

<

‘No

Store sector number of
{PBBSI + [TXX] in [SSVH

!

Is the content of the
address buffer location
specified by [TXX1<0?

1 Yes

|

1 No {memory-reference instruction)

L

Is it <-64

instructions)

Store content of instruction buffer
location specified by [TXX] in as-
sembler buffer location specified
by IXXTI

©

-

Is sector of addf;;s
specified by [TXX] =
sector 07

lNo

Is sector same as
specified by [SSVEI?

Jyes

Set sector bit of instruction
specified by [TXX]

e

Yes (o{her data and

Merge content of

address buffer with
content of corresponding
instruction buffer location
to form shift instruction

|

Store instruction in assembler
buffer location specified
by [XXT]

Yes

Reset sector bit of inst?uction
specified by [TXX]

]

Merge instruction with
corresponding 9-bit address
and store in assembler
buffer location specified

by [XXT]

{c) Part IIT (ASEM).
Figure 29. - Continued,

7

Merge indirect and index
bits from instruction word
to address word and

store in [SVAD]

!

Search intersector reference
data, supplied through BDEBUG,
corresponding to sector specified
by [SSVE for {SVAD}

Found

®

l Not found

Search intersector reference
data supplied for sector 0
for [SVADI

Found

Store intersector reference
address in address buffer
location specified by [TXX]

!

‘ Not found

Increment instruction
counter [MAX]and
instruction limit [TMAX]

Yes

Is the assembled program
to be inserted into program
addition area?

Set indirect bit and reset
index bit of [TXX] specified
instruction in instruction

!

lNo

No

Is [MAX] >length of
instruction buffer ?

l Yes

Deter mine first available
intersector reference
address (SBSE)

Advise operator return to
(PTCH) reentry point

Determine sector number
of intersector reference

address
!

buffer

Store [SVADI in instruction
buffer location specified

by [MAXL Store DAC indicator
[CODSI in corresponding
address buffer location

Is sector number 07?

I Yes

No

Increment intersector reference
address by [ABI0]. Increment
[ABI0L

——1

!

I Does sector number =[SSBV] I_Yes_.

Add [MAX] to {PBBS] to form
intersector reference

address

Increment intersector reference
address by [ABI1]. Increment
{ABTIL

—

Increment intersector reference

Increment instruction
counter

No address by [ABI2l. Increment |—=
[ABI2L
[MAX}
Yes Advise operator return to

Is [MAX] >length of
instruction buffer?

lNo

Store [SVADI in instruction
buffer location specified

by [MAX]. Store external
address indicator [CODS]

in corresponding address
buffer location

(PTCH) reentry point

{c) Concluded.

Figure 29. - Concluded.

Store intersector reference
address in assembler
buffer location specified

by [IMAX]

65

99

| Enteruist |

i

Store X register in location
[AITl as address where
instruction is to be inserted

.

Store B register in location
[LOTI as address where
instruction is located

=

Clear left half of A register

l

Store A register in location
(DLMP) as print code or
form at number

|

Reset indexing indicator

—

Output a carriage return
and line feed to listing device

!

Print[AII], name assigned
if any, and its octal contents

(PGEN)
!

Space listing device to

instruction field

1"

Instruction type [TYPE decoder

e}

Block-storage pseudo-op [BSZ1:
(1) Space device to address field
(2) Print number of successive

zeros stored in locations
specified by contents of [LOT}

12

I

Direct-address-constant pseudo-op
[DACI:

(1) Print = if indirect bit of
instruction specified by [LOTI
set

(2) Space device to address field

(3) Set indexing indicator if
index bit of instruction set

(4) Reset index and indirect bits

(5} Print resulting address,
name if any, and octal contents

(PGEN)

Double-precision-constant
pseudo-op {DPC]:
(1) Space device to address field
{2) Print double-precision num-
ber specified by contents of
[Lon (Lon

ASCII infor mation pseudo-op [BCT):
(1) Space device to address field
(2) Print ASCII infor mation as

specified by contents of [LOT]

19

P‘l{ IleLA?\PL];7?]
‘Yes

Load A register with contents
of location specified by [LOTI.
Find instruction mnemonic

and type. (FNOM)

Store instruction type
in [TYPE

1

[vPa -1bwpl+ 6

!

Load pseudo-op mnemonic
from pseudo-op mnemonic
list as specified by [DLMPI

Floating-point-constant pseudo-op
[FPCl:
(1) Space device to address field
(2) Print floating-point number
specified by contents of {LOT]

-

Decimal integer pseudo-op [DEC]
(1) Space device to address field
(2) Print decimal integer speci-

fied by contents of [LOTJ

Octal integer pseudo-op [OCT:
(1) Space device to address field
(2) Print octal integer specified
by contents of (LOT}

Decode mnemonic word and

print each character

[Exit LIST] ~—

Memory reference instruction:

(1) Print "=" if indirect bit of
instruction specified by [LOTI
set

(2) Space device to address field

(3) Set indexing indicator if
index bit of instruction set

{4) Obtain instruction address
from address bits, sector,
bit, and contents of [AIL}

(5) Print address, name, if any,
and contents (PGEN)

Note: Ignore step (3) for type 4 entry

E

B

Input-output instruction:
(1) Space device to address field
(2) Print instruction operand
contained in instruction word

EIE

L

Shift instruction:
(1) Space device to address field
(2) Print shift count contained
in instruction word

Other machine instructions,
no address output required

Figure 30. - Functional diagram of instruction list routine (LIST).

L Enter PGEN

!

Print specified address
in octal

If indexing indicator set
print "'1"; if not, print
two spaces

!

[Print a space l

T+

Search source address
tables and INFORM
address tables for
specified address. If
found, return corres-
ponding hame.

(NFIN)

Decode and print
name characters

{
[Print three spacesv]
!

Print contents of
specified address
in octal

!

[biteeen |

Enter FNDI l Enter FNDM I

Found| Search instruction mnemonic Logical AND instruction

resuit to memory reference
Not found op-code list
ﬁl{xnt FNDI | Found

Is itan X register instruction?
‘ lYes

set for specified mnemonic word with 36000, Compare |Not found

Increment return Exit FNDM with proper mnemonic

address T FNDI and indicate type 4 instruction
No [i;si:rzgieonrzo';y ~reference Yes Exit FNDM with proper mnemonic
and indicate type 5 instruction

{ {

Exit FNDI'through returp Logical AND instruction word
address with corresponding with ‘176000, Compare resuft | Not found
op-code if any to first input-output instruction
list
l Found
Increment return address
Exit FNDM with proper mnemonic
indicat : cti
Is it an input-output instruction E and indicate type 3 instruction
instruction ?
‘ No nd l
[Increment return address l Logical AND instruction word
‘ with*177077. Compare resuit to
Yes second input-output instruction
[Isitashiftinstruction? |1 list
1No l Not found
| Increment return address I Logical AND instruction word Iy g0 ng
with*177700. Compare result to
l shift instruction list
Is i:ranc)tl.othgr machine {Yes| ‘Found
instruction 7
Exit FNDM with proper mnemonic
lN" l— and indicate type 1 instruction
Increment return address —‘
Is it [OCTI ‘
pseudo-op? Compare instruction word with ot found
No remaining machine instruction
list
increment
ncr JFound
Yes|

Exit FNDM with proper mnemonic

[1s it a (DECI or 10CTI pseudo-op?
and indicate type 0 instruction

‘No

I Increment return address I

Exit FNDM with (***) mpemonic

and indicate type 6 instruction

r Is it a [FPCI pseudo-op ? Iﬁei——Llncrement return address l
‘No Yes f No
rlncrement return address I -—{ Is it a [DAC] pseudo-op ? l

I Is it a {BCI] pseudo-op ? 'ﬂ l Increment return address l
Ino t o
I fncrement return address | _Ye;sl IsitalDPCI pseudo-op?l

Figure 31. - Functional diagram of instruction search routines (FNDI) and (FNDM).

68

\‘t - - —

Dﬁé}i—tor
entry witha ' ?

) Enter GSFR

|

Advise operator of scale
factor input requirement

!

ter minate Number

No

l Yes

Operator enters floating-
point numerator or
character

| _Character

_ ___ Error

1

Operator enters floating-
point denominator

{ oK

Yes [y N
< & 1 Is denominator zero? I

‘No

&[# Did operator enter "'V"'? i Yes

M-r " Did operator enter "B"'? 4#—

‘ Did operator enter "=''? }g

Divide numerator by
denominator to form
engineering units/
machine units

!

*l,_,
M Did operator enter "-"?J

l Yes

Store result in scale
factor

Use lastr-entered scale
factor

|
ﬁintry exit from GSFRJ

[pefautt exit from GsFR |

Command

!

[Error exit from GSF

R
—_

f

Not found

specification

Operator command/name

Operator enters power
of 2, nn, in decimal

Error

Store 10 volts/32 000 machine
units in scale factor

{ox

Search INFORM name table
for specified name

(FIND)

iFou nd

Store

2 nn engineering units/
32 768 machine units
in scale factor

Obtain sca

assigned to entered
name using index

le factor

[Error exit from GSFR _|=—

1

factor

Store result in scale

[entry exit from GSFR]

Figure 32 - Function'al diagram of scale-factor input routine (GSFR).

69

0L

| entersese |

i

Is next available location
for intersector reference
within specified sector
[BMIN] less than last
available location [BMAX]?

Yes

[ty

Return [BMIN] of specified
sector as intersector
reference location

JNo

Is next available
location for intersector
reference in sector 0
less than last available
location ?

Yes

—-—

Return [BMIN] of sector 0
as intersector reference
location

[t

}No

Advise operator that
no intersector reference
locations are available

-

Return location 0 as
intersector reference
location

L Enter TRAN]
'

Save A register entry
as transfer location

l

Does operator want | NO -
transfer to be made ? —-Ijeturn exit from TRAN—l

lYes
| Clear transfer counteq

Is content of address
buffer specified by
transfer counter an
external address
indicator [COD8I?

‘No

Yes

ExtSBSE |

reference locations (SBSE),

Figure 33. - Functional diagram of determination routine for intersector

Store content of assembler
buffer tocation specified
by transfer counter into
location specified by cor-
responding instruction
buffer location

As specified by transfer
counter, store content
of assembler buffer in
transfer location

-

Increment transfer
counter

l

Increment intersector
reference counter
{BMINI corresponding to
sector receiving transfer

Increment transfer
location

1

I's transfer complete ?
i.e., transfer counter =
> [MAX]?

lYes

Transfer complete exit
from TRAN

=
o

Figure 34. - Functional diagram of assembler buffer transfer routine (TRAN),

Enter CMMP |

!

Obtain operator address Command -
entry (GETN) ——-I Command exit from CMMF'

l Address

Verify that address is not indexed
or an assembler location-field
entry or undefined address (CMCK)

}ox

Set temporary first and last
address counters to operator
address entry

!

Operator command specification
(INFT)

——| CMMP command decoder J

Error

' Command
Obtain operator address entry
l Address
Verify that address is not indexed Error

or an assembler location-field
entry or undefined address (CMCK)

} ok

Set temporary last address
counter to operator
address entry

"SPACE"

Transfer temporary counters
to first and last address
counters

Set current program indicator
{CSUBI and program relocation
base [CBSH according to first

address counter (CSED)

Address exit from CMMP

i

Advise operator of address error

|

Return to command structure

Other

Figure 35. - Operator address-counter and command-specification routine (CMMP),

72

Enter CSET

!

Store location of start of
first source program name
table [NADF] in current
program indicator [CSUBI

!

Store relocation base of
first source program (contents
of first source-address table
location} in current program

base [CBSH

Store [NADF] in index
counter [X]

Increment [X]l

No

Does location in source-name

table specified by {X] indicate | Yes
start of new program name l
list? (i.e. isit zero?) -
Yes Is content of corresponding
‘ No source address location >
Is (X] = last source name first address counter ?
location [NADR]? JNO
j Yes i Isit>[CBSH?
Exit CSET ‘Yes

' Store it in [CBSH
store [X] in [CSUB.

Figure 36, - Functional diagram of current-program indicator and relocation-base
initialization routine (CSET).

Enter GETN j
|

Set address program indicator
{RSUBI to current-program
indicator {CSUBI

!

Set address relocation base
[BASE] to current-program
relocation base [CBSH

i

Set address/name bias [RILTI
to source-name table bias
[BILN]

command| Call common address input

routine (GETA)
J Address
l Address exit from GETN I

!

| Command exit from GETN j

Enter CMCK j

!

I's indexing indicator (X register) | Yes

Enter ADRS]

!

Set address program in-
dicator [RSUB] to start
location of {INFORM)
name table (DINT]

!

Set address relocation base
[BASE to zero

|

Set address/name bias [RILII
to INFORM name table

bias [BILIl

Call common address input routine
(GETA)

Command

‘ Address

Verify that address is not indexed
or an assembler location-field

entry or undefined address
(CMCK)

Error

} ox

Address exit from ADRS]

{

Error exit from ADRS

set?
l No
Is assembler location address Yes

indicator set? (bit 15 of
register)

lNo

Is assembler undefined Yes
address indicator set?

(bit 16 of A register)

lNo

| OK exit from CMCK |

P

I Error exit from CMCK]

Figure 37. - Functional diagram of operator address entry and verification routines (GETN), (ADRS), and (CMCK).

74

No

Enter GETA

!

Set internal address bias

[BIA! to zero. Reset assembler
address indicators (bits 15 and
16 of [MASK], reset address
indexing indicator [INDX]

Operator input of name
or command
(NAME)

!

Expand delimiter to full
ASCII (i.e., add *200).
Store in [DLIMI.

!

Is name entry indicator [NLTHI
set?

[
j Yes

| s [DLIMI an ASCII period?

lYes

Save first program source-
name counter (i.e., first
location of secondary-name

table)
!

Store total source-name
counter in first program
source-name counter

!

Load A register with displace-
ment between primary- and
secondary-source-name tables
[BILNI. Load X register with
start of primary-source-name
tables [NADF]

!

Search all source names
for operator-specified
name (FIND)

Found

Set address/name bias [RILT
to source-name-table bias
[RILNI

Store contents of corresponding
source-address-table focation in
address relocation base [BASE

f

Store address in address program
indicator [RSUBI

t

Decrement address

fNo

Does this address indicate
start of a program name table ?
(i.e., is content zero?)

Yes

Add [NADF] to index returned

by [FIND]
f

Restore contents of first
program source-name counter

il

} Not found

Restore contents of first
program-source-name counter

!

Was (GETA) entered from (ADRS)?

‘Yes

Advise operator of error.
Return to command structure

!

in [HDLA]

Store (GETA) return address

!

Error | Obtain operator address entry

(ADRS)

‘ Address

[Address exit through (HDLA) |

__l; Error exit through [HDLAI l

Figure 38. - Functional diagram of common address input routine (GETA).

?

Delimiter (DLIM) decoder |

—

g Set bit 16 of [IMASK to specify
bler undefined address
entry
" Set bit 15 of [MASK] to specify
- assemble instruction address
entry

r Load A register with ASCIL+ |

Operator number entry
(GTYR)

Did oiaerator enter a number
within size of instruction

Yes

buffer ?
_tNo

Load A register with ASCII #,
Command exit from GETA

e

" Is number positive ? "_ES_T

tyn

Operator octal number entry
(GTYR)

e Advise operator of octal
entry requirement

Load A register with ASCIT'
"APOSTROPHE"
Operator octal number entry

(GTYR)
i

Add [BASE to octal number
entry

Load A rTagister with address/
name bias [RILIl, toad X

register with address program
indicator [RSUBI

[RSUBI for operator-specified
name

) lFound

Location of address corresponding
to operator name entry =
[INDEX RETURNED] + 2ABILI +1

(FIND)

Search table specified by Nt foun d[|

Loz;d'A r_egister with
ASCII 4 Command
exit from GETA

1

[Load A register with [MASKI.
toad B register with [ADDI.
Load X register with [INDX]

e

_ 1

'

Add contents of this
location to [BASHL.
Store in [ADDI]

!

Use [DLIMI as entry
ter mination code

[Entry termination decoder

—

" Advi serperator of overfiow.
Load A register with #.
Command exit from GETA

No

LYes ™ Tistaomi 202

o
+

Operator positive-number entry
{GTYR)

Operator negative-number entry

(GTYR)

[Reset machine overfiow indicator

i

Add entry to internal address bias

}

No

r

[Store nu mber in{ADD}.

Load operator ter mination
code

Store contents of first address
counter in (ADD]

Operator termination code entry

(NP |

"SPACE" Add itoz)}itents of first address

counter, Store in {ADD]

Other . "
-——{ Command exit GETA l

Is overflow indicator set?

l Yes

Advise operator, load A register
with #, command exit from GETA

Set assembier address in-

dexing indicator [INDX]

!

Operator termination entry
(INPT)

Did éperator enter a space? l

] no

Other

Load A register with ASCIT 4.
Command exit from GETA

"'SPACE"

i

[oo -taopt vl b

Figure 38. - Continued.

75

76

l Enter GTYR i

Operator number input
(TTYR2)

Number entered l

Save entry ter mination
code

Convert entry to octal
integer

I BitGTYR |

Number defaulted

No

!

®

Did operator default entr;:
witha "B*?

‘ Yes

Operator input of ter mination
code (INPT)

Use value of external
address bias location
{filled through an INFORM
command) as operator
number input

|

[witew

!

Load A register with ASCII #,
Comimand exit from GETA

Figure 38, - Concluded.

l Store character in [DLIMI

No

Enter NAME |

Reset NAME entry indicator
(NLTH)

Store trﬁ_ﬁcated ASCII space

characters (*40) in five-
character words. [X] =0

lnrput' and truncate operator
specified character
(INFT)

o

Is character a number

!

No Is this first entry ?
{X1=-07?

Yes

) 1

[;lave i'ér less name
—1 characters been entered ?
Xi<?2

or a letter ?

J Yes

Sfére character in
character word specified

~ by iXI 7
B!

Set name entry indicator

(NLTHI
i

L Increment [X] J

l Yes

!

Shift character words
down one location

!

Store truncated space
in first character word

Pac-k chafacter words into
name buffer words
[BUFIl and [BUF + 1]

f

Exit name with
[DLIMI in A register

Is[X1= 57
Yes

| Advise operator of error I———

No

Figure 39. - Functional diagram of name-command specification routine (NAME),

77

Not found

Enter NFIN |

!

Search source-address
tables for specified
address

Found

Load A register with
corresponding name word
from primary-name table

{

Load B register with
corresponding name word
from secondary-name table

'
T

78

!

Search INFORM address

Found

tables for specified
address

} Not found

Load A and B registers with
space characters

A =" 20202

B = '4040

[Exit NFIN

[Enterrmo |
!

Search specified name
table for name specified

Not found

in name buffers [BUFI
and {BUF +1]
l Found

Return displacement of
name from start of
table as index

!

I_Found exit from FIND |

|

M—found exit from FIND]

Figure 40. - Functional diagram of name table search routines (NFIN) and FIND).

National Aeronautics and THIRD-CLASS BULK RATE
Space Administration

Washington, D.C.
20546

Official Business
Penalty for Private Use, $300

2 1 19,6, 033079 S00903DS

DEPT OF THE AIR FORCE
AF WEAPONS LABORATORY
ATTN: TECHNICAL LIBRARY {SUL)
KIRTLAND AFB NM 87117

NNASA

Postage and Fees Paid
National Aeronautics and
Space Administration
NASA-451

POSTMASTER: If Undeliverable (Section 158
Postal Manual) Do Not Return

